Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Basic Sciences

Hydroxy Metabolites of Methyl-n-amylnitrosamine Produced by Esophagus, Stomach, Liver, and Other Tissues of the Neonatal to Adult Rat and Hamster

Sidney S. Mirvish, Chuan Ji and Samuel Rosinsky
Sidney S. Mirvish
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chuan Ji
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samuel Rosinsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published October 1988
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We measured the ability of neonatal to adult MRC-Wistar rat and Syrian hamster tissues to convert the esophageal carcinogen methyl-n-amylnitrosamine (MNAN) into the stable metabolites 2- to 5-hydroxy-MNAN and 3- and 4-oxo-MNAN. Slices or pieces of freshly removed tissues were incubated for 3 h with 23 µm MNAN and dichloromethane extracts were analyzed by gas chromatography-thermal energy analysis. The sum of the metabolites was expressed as percent metabolism of MNAN/100 mg tissue (“percent metabolism”). Tissues of animals from 1 day before birth to 56–70 days of age were examined. Metabolites in rat esophagus reached 12.6% at 6 days of age, three times the adult level, and that in hamster esophagus reached 13.1% at birth, 22 times the adult level. Forestomach metabolism was 1.9% in 3-day rats and 5.7% in 3-day hamsters, though the adult levels were <0.5%. Metabolism in rat, but not hamster, liver showed a peak at 9 days that was 3.6 times the adult level. Hamster, but not rat, skin showed about 1% metabolism. Total metabolism by glandular stomach, lung, and trachea of both species also showed changes with age. Ratios between 2-, 3-, 4-, and 5-hydroxy-MNAN were of three types: considerable 2-, 3-, and 4-hydroxy-MNAN, typical of esophagus; mainly 4-hydroxy-MNAN, typical of liver; and mainly 5- with some 4-hydroxy-MNAN, typical of rat lung. Incubation of adult rat liver and esophagus with varied MNAN concentrations showed apparent Km values of 150 (esophagus) and 300 (liver) µm. Metabolite yields after young and adult rat esophagus and liver were incubated with 23 µm MNAN for 1, 2, or 3 h indicated that differing in vitro stability of enzyme activities did not explain the age differences. The 2.9- to 3.6-fold differences in total metabolite yield between young and adult rat esophagus and liver, observed when these tissues were incubated with 23 µm MNAN, was in contrast to the 1.3- to 1.6-fold difference when these tissues were incubated with 300 or 600 µm MNAN, suggesting that much of the observed age difference was specific to low MNAN concentrations. MNAN hydroxylation could be used to indicate tissue susceptibility to MNAN carcinogenesis and the presence of enzymes (probably cytochrome P-450 isozymes) that catalyze each of the three types of MNAN metabolism.

Footnotes

  • ↵1 This research was supported by NIH Grant R01-CA-35628 and Core Grant CA-36727 from the National Cancer Institute, and Core Grant ACS-SIG-16 from the American Cancer Society. Some of these results were presented at meetings (1–3).

  • ↵2 To whom requests for reprints should be addressed, at Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE 68105-1065.

  • ↵3 Visiting scientist from Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.

  • Received January 11, 1988.
  • Revision received May 31, 1988.
  • Accepted July 15, 1988.
  • ©1988 American Association for Cancer Research.
PreviousNext
Back to top
October 1988
Volume 48, Issue 20
  • Table of Contents
  • Table of Contents (PDF)
  • Index by Author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hydroxy Metabolites of Methyl-n-amylnitrosamine Produced by Esophagus, Stomach, Liver, and Other Tissues of the Neonatal to Adult Rat and Hamster
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Hydroxy Metabolites of Methyl-n-amylnitrosamine Produced by Esophagus, Stomach, Liver, and Other Tissues of the Neonatal to Adult Rat and Hamster
Sidney S. Mirvish, Chuan Ji and Samuel Rosinsky
Cancer Res October 15 1988 (48) (20) 5663-5668;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Hydroxy Metabolites of Methyl-n-amylnitrosamine Produced by Esophagus, Stomach, Liver, and Other Tissues of the Neonatal to Adult Rat and Hamster
Sidney S. Mirvish, Chuan Ji and Samuel Rosinsky
Cancer Res October 15 1988 (48) (20) 5663-5668;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

Basic Sciences

  • T-Cell Receptor Vβ Gene Expression Differs in Tumor-infiltrating Lymphocytes within Primary and Metastatic Melanoma
  • Laminin Receptor Complementary DNA-deduced Synthetic Peptide Inhibits Cancer Cell Attachment to Endothelium
  • Acidic and Basic Fibrolast Growth Factors Are Present in Glioblastoma Multiforme
Show more 3

Articles

  • T-Cell Receptor Vβ Gene Expression Differs in Tumor-infiltrating Lymphocytes within Primary and Metastatic Melanoma
  • Laminin Receptor Complementary DNA-deduced Synthetic Peptide Inhibits Cancer Cell Attachment to Endothelium
  • Acidic and Basic Fibrolast Growth Factors Are Present in Glioblastoma Multiforme
Show more 3
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement