Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Articles

Integrated Microscopic-Macroscopic Pharmacology of Monoclonal Antibody Radioconjugates: The Radiation Dose Distribution

Kenji Fujimori, Darrell R. Fisher and John N. Weinstein
Kenji Fujimori
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Darrell R. Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John N. Weinstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI:  Published September 1991
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Accurate dosimetry is essential for the assessment of radioimmunotherapy. Most often studied to date has been the macroscopic dosimetry related to organ and tumor distribution of the radiolabeled antibody, but the question of microscopic dose heterogeneity is also important. To address the latter issue, we have taken an integrated approach to the pharmacology, taking into account whole-body distribution, transcapillary transport, percolation through the tumor interstitial space, antigen-antibody interaction, and antibody metabolism. The first step is to simulate the spatial antibody concentration profile in a tumor as a function of time after i.v. (e.g., bolus) injection, using reasonable values for the parameters involved. The second step is to calculate, also as a function of time, the absorbed radiation dose distribution resulting from each concentration profile.

Parameter values for IgG pharmacology and a radiation point source function for 131I are used to explore the effect of antibody distribution profiles on absorbed dose in the tumor. The geometry simulated corresponds to a spherical nodule of densely packed tumor cells. Absorbed doses are calculated for radiation from a single nodule (e.g., a micrometastasis or prevascular primary tumor) and for a cubic lattice of such nodules (e.g., corresponding to nodular lymphoma). As noted in our previous studies, there is a “binding site barrier.” Binding to antigen retards antibody percolation into the nodules; high antibody affinity tends to decrease percolation and give a higher absorbed dose near the surface of each nodule. Heterogeneous antibody distribution results in a heterogeneous absorbed dose. This is more apparent in the case of radiation from a single nodule than it is for radiation from within an array of nodules. Dehalogenation results in a lower absorbed dose over time, and the effect is more apparent at later times after injection.

PERC-RAD, the computer program package developed for these analyses, provides a convenient and flexible way to assess the impact of macroscopic and microscopic parameters on the distribution of radioimmunoconjugates and on the consequent profile of absorbed radiation dose in tumors. This mathematical model and the general principles developed here can be applied as well to other radiolabeled biological ligands.

Footnotes

  • ↵1 Supported in part by NIH Grant CA44991.

  • ↵2 Permanent address: Department of Nuclear Medicine, School of Medicine, Hokkaido University, N15 W7 Kita-ku, Sapporo, 060, Japan.

  • ↵3 To whom requests for reprints should be addressed, at Laboratory of Mathematical Biology, National Cancer Institute, Building 10, Room 4B-56, Bethesda, MD 20892.

  • Received September 14, 1990.
  • Accepted June 28, 1991.
  • ©1991 American Association for Cancer Research.
PreviousNext
Back to top
September 1991
Volume 51, Issue 18
  • Table of Contents
  • Table of Contents (PDF)
  • Index by Author
  • Back Matter (PDF)
  • Editorial Board (PDF)
  • Front Matter (PDF)

Sign up for alerts

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Integrated Microscopic-Macroscopic Pharmacology of Monoclonal Antibody Radioconjugates: The Radiation Dose Distribution
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Integrated Microscopic-Macroscopic Pharmacology of Monoclonal Antibody Radioconjugates: The Radiation Dose Distribution
Kenji Fujimori, Darrell R. Fisher and John N. Weinstein
Cancer Res September 15 1991 (51) (18) 4821-4827;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Integrated Microscopic-Macroscopic Pharmacology of Monoclonal Antibody Radioconjugates: The Radiation Dose Distribution
Kenji Fujimori, Darrell R. Fisher and John N. Weinstein
Cancer Res September 15 1991 (51) (18) 4821-4827;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Core-Binding Factor: A Central Player in Hematopoiesis and Leukemia
  • Introduction of H. Rodney Withers
  • Id Gene Expression as a Key Mediator of Tumor Cell Biology
Show more Articles
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement