Molecular Ordering of Apoptosis Induced by Anticancer Drugs in Neuroblastoma Cells

Simone Fulda, Santos A. Susin, Guido Kroemer, and Klaus-Michael Debatin

University Children’s Hospital, D-89075 Ulm, Germany [S. F., K.-M. D.]; and Centre Nationale de la Recherche Scientifique, Unid Propre de Recherche 420, F-94801 Villejuif, France [S. A. S., G. K.]

ABSTRACT

Apoptosis mediated by anticancer drugs may involve activation of death-inducing ligand/receptor systems such as CD95 (APO-1/Fas), cleavage of caspases, and perturbation of mitochondrial functions. We investigated the sequence of these events in SHEP neuroblastoma cells transfected with Bcl-2 or Bcl-XL, using two different drugs, namely, doxorubicin (Doxo), which activates the CD95/CD95 ligand (CD95-L) system, and betulinic acid (Bet A), which does not enhance the expression of CD95 or CD95-L and which, as shown here, directly targets mitochondria. Apoptosis induced by both drugs was inhibited by Bcl-2 or Bcl-XL, overexpression or by bongkrekic acid, an agent that stabilizes mitochondrial membrane barrier function, suggesting a critical role for mitochondria. After Doxo treatment, enhanced CD95/CD95-L expression and caspase-8 activation were not blocked by Bcl-2 or Bcl-XL, and were found in cells with a mitochondrial transmembrane potential (ΔΨm) that was still normal (ΔΨmΔ). In marked contrast, after Bet A treatment, caspase-8 activation occurred in a Bcl-2- or Bcl-XL-inhibitable fashion and was confined to cells that had lost their ΔΨmΔ cells. Mitochondria from cells treated with either Doxo or Bet A induced cleavage of both caspase-8 and caspase-3 in cytosolic extracts. Thus, caspase-8 activation may occur upstream or downstream of mitochondria, depending on the apoptosis-initiating stimulus. In contrast to caspase-8, cleavage of caspase-3 or poly(ADP-ribose)polymerase was always restricted to ΔΨmΔ cells, downstream of the Bcl-2- or Bcl-XL-controlled checkpoint of apoptosis. Cytochrome c, released from mitochondria undergoing permeability transition, activated caspase-3 but not caspase-8 in a cell-free system. However, both caspases were activated by apoptosis-inducing factor, indicating that the mechanism of caspase-8 activation differed from that of caspase-3 activation. Taken together, our findings demonstrate that perturbation of mitochondrial function constitutes a central coordinating event in drug-induced cell death.

INTRODUCTION

Cytotoxic drugs with distinct primary intracellular targets induce apoptosis in chemosensitive cells (1). Activation of apoptosis pathways may involve ligand/receptor-driven amplifier systems such as the CD95 system. Upon CD95-L receptor interaction, the receptor proximal caspase-8 (FLICE/MACH) is cleaved, leading to activation of a downstream caspase cascade involving caspase-3 (CPP32/Yama; Refs. 2–11). Induction of CD95-L and up-regulation of CD95 after treatment with cytotoxic drugs such as Doxo have been observed in a variety of tumor cells (12–18). Blockade of CD95/CD95-L interaction by antagonistic antibodies inhibits drug-induced cell death (12–18). However, drug-triggered apoptosis may also occur independently of the CD95/CD95-L system (19–21). Thus, Bet A kills cells without triggering the CD95/CD95-L system, apparently by directly perturbing mitochondrial functions (19).

Alterations of mitochondrial functions such as PT have been found to play a major role in the apoptotic process, including cell death induced by chemotherapeutic agents (22–28). Mitochondria undergoing PT release apoptogenic proteins such as cyt c or AIF into the mitochondrial intermembrane space into the cytosol, where they can activate caspases and endonucleases (22, 23, 26, 29–32). The connection of mitochondrial PT to activation of the caspase cascade appears to be complex (22, 23, 33, 34). On one hand, recombinant caspases can induce PT, probably via a direct effect on the PT pore complex (23, 35). On the other hand, caspases are activated by mitochondrial intermembrane proteins (23, 31), suggesting that caspases can act either upstream or downstream of mitochondria.

Mitochondrial function during apoptosis seems to be controlled by the Bcl-2 family of proteins (36, 37). Bcl-2 and several of its homologues have been localized to intracellular membranes, including the mitochondrial membrane (36). Overexpression of the antiapoptotic molecules Bcl-2 and Bcl-XL has been found to confer resistance to anticancer treatment (38–41). Bcl-2 and Bcl-XL may inhibit apoptosis through the capacity to prevent PT (25, 26) and/or to stabilize the barrier function of the outer mitochondrial membrane (29, 30, 42, 43). Both Bcl-2 and Bcl-XL have been shown to prevent opening of the purified PT pore complex reconstituted in liposomes (35). In addition, it has been suggested that Bcl-2 and Bcl-XL can bind cytotoxic caspases via Apaf-1 to the mitochondrial membrane, thereby preventing their activation (44, 45). Bcl-XL has recently been reported to prevent Apaf-1-dependent caspase-9 activation via interaction with Apaf-1 (46, 47).

The sequences and relative contributions of the different pathways (activation of the CD95/CD95-L system, activation of upstream and downstream caspases, and perturbation of mitochondrial membrane barrier function) participating in drug-triggered apoptosis is unknown. Here, we investigated the functional relationship of these signaling events in SHEP neuroblastoma cells transfected with Bcl-2 or Bcl-XL, following treatment with two different cytotoxic drugs: Doxo, which triggers apoptosis via activation of the CD95/CD95-L system (12–18); and Bet A, which induces apoptosis in a CD95-independent fashion (19).

MATERIALS AND METHODS

Drugs. Doxo (Farmitalia, Milan, Italy) and Bet A (Sigma Chemical Co., Deisenhofen, Germany) were provided as pure substances and were dissolved in sterile water (Doxo) or DMSO (Bet A).

Cell Culture. The human neuroblastoma cell line SHEP was kindly provided by Prof. M. Schwab (German Cancer Research Center, Heidelberg, Germany). Cells were maintained in monolayer culture in 75-cm² tissue
culture flasks (Falcon, Heidelberg, Germany) in RPMI 1640 (Life Technologies, Inc., Eggenstein, Germany) supplemented with 10% heat-inactivated FCS (Conco, Wiesbaden, Germany), 10 mM HEPES (pH 7.4; Biochrom, Berlin, Germany), 100 units/ml penicillin (Life Technologies, Inc.), 100 μg/ml streptomycin (Life Technologies, Inc.), and 2 mM L-glutamine (Biochrom) and were incubated at 37°C in 95% air/5% CO2. SHEP neuroblastoma cells stably transfected with Bcl-2, Bcl-XL, or vector control were cultured in DMEM (Life Technologies, Inc.) containing 500 μg/ml G418 (Geneticin, Life Technologies, Inc., Eggenstein, Germany) supplemented with 10% heat-inactivated PCS culture flasks (Falcon, Heidelberg, Germany). 100 units/ml penicillin (Life Technologies, Inc.), 100 μg/ml streptomycin (Life Technologies, Inc.), and 2 mM L-glutamine (Biochrom) and were incubated at 37°C in 95% air/5% CO2. SHEP neuroblastoma cells stably transfected with Bcl-2, Bcl-XL, or vector control were cultured in DMEM (Life Technologies, Inc.) containing 500 μg/ml G418 (Geneticin, Life Technologies, Inc., Eggenstein, Germany).

Determination of Apoptosis
Cells were incubated for indicated times with Doxo, Bet A, or anti-APO-1 and harvested by trypsinization using 0.05% trypsin and 0.02% EDTA without Ca2+ and Mg2+ (Life Technologies, Inc.). Quantification of DNA fragmentation was performed by FACS analysis of propidium iodide-stained nuclei, as described previously (48), using CELLQuest software (Becton Dickinson, Heidelberg, Germany).

Inhibition of Drug-induced Apoptosis by Z-VAD.fmk or BA.
The broad spectrum tripeptide inhibitor of caspases Z-VAD.fmk (Enzyme Systems Products, Dublin, USA) was used at a concentration of 60 μM and the mitochondrion-specific inhibitor BA at a concentration of 50 μM (kindly provided by Dr. J. A. Duine, University of Delft, Delft, the Netherlands).

Analysis of CD95 Expression
Cells were stained with anti-APO-1 (CD95) IgG1 mAb (1 μg/ml; Ref. 3) for 45 min at 4°C followed by goat antimouse IgG-FITC (Immunotech, Hamburg, Germany) for 30 min at 4°C. FITC13 IgG1 antibody was used as an isotype-matched nonbinding antibody to control for nonspecific binding.

RT-PCR for CD95 and CD95-L mRNA.
RT-PCR for CD95 and CD95-L mRNA was performed as described previously (13).

Western Blot Analysis.
Western blot analyses for caspase-3 and caspase-8, PARP, CD95-L, CD95, and cyt c proteins were performed as described previously (13, 49, 50).

Preparation of Mitochondria, Cytosolic Extracts, Nuclei, and AIF.
Mitochondria were isolated as described previously by ultracentrifugation at 100,000 x g for 1 h at 4°C (50). Cytosolic extracts, nuclei, and AIF-containing mitochondrial supernatant were prepared as reported previously (23, 50).

CFS of Apoptosis.
Nuclear fragmentation was determined as described previously (50). For determination of caspase activation, cytosolic extracts (2 μg/ml; all concentrations are final) were incubated with mitochondria (1 μg/ml), cyt c (10 μM) or AIF-containing mitochondrial supernatant (0.5 μg/ml) in buffer D (10 mM HEPES (pH 7.4), 50 mM NaCl, 2 mM MgCl2, 5 mM EGTA, 1 mM DTT, 2 mM ATP, 10 mM phosphocreatine, 50 μg/ml creatine kinase, and 10 μM cytochalasin B) for 2 h at 37°C. Proteins were separated by 15% SDS-PAGE, and Western blot analysis was performed as described above.

Determination of Mitochondrial Membrane Potential.
For determination of mitochondrial membrane potential, cells (5 x 105/ml) were incubated with DiOC6(3) (40 nM; Molecular Probes, Inc., Eugene, OR) for 15 min at 37°C and analyzed on a flow cytometer (FACScan; Ref. 25). For cell sorting, cells were stained with DiOC6(3) and sorted into DiOC6(3)pH and DiOC6(3)™ cells on a cytometer (FACS Vantage; Becton Dickinson). As a control, cells were treated with the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (200 μM; Sigma).

RESULTS

Doxo- and Bet A-induced Apoptosis Depends on Mitochondrial PT and Caspase Activation. We initially analyzed Doxo- and Bet A-induced apoptosis by determining nuclear fragmentation and disruption of the ΔΨm. Doxo and Bet A induced loss of ΔΨm and nuclear fragmentation (Fig. 1, A and B) at doses previously shown to be comparable with respect to cytotoxicity (87 ± 3% specific apoptosis for 0.5 μg/ml Doxo and 78 ± 7% specific apoptosis for 10 μg/ml Bet A; Refs. 13 and 19). Both the mitochondrial and the nuclear manifestations of apoptosis were blocked by overexpression of Bcl-2 and Bcl-XL (Fig. 1, A and B). To determine whether apoptosis involved opening of the mitochondrial PT pore, we tested the effect of BA, a specific inhibitor of this pore (24, 25). Addition of BA inhibited drug-triggered nuclear fragmentation and ΔΨm loss, indicating that mitochondrial alterations involved opening of PT pores (Fig. 1, A and B). In Doxo-treated cells, nuclear fragmentation and loss of ΔΨm were both inhibited by the broad range caspase inhibitor Z-VAD.fmk (Fig. 1, A and B). In contrast, Z-VAD.fmk affected only the Bet A-induced nuclear fragmentation; it had no effect on Bet A-induced ΔΨm dissipation (Fig. 1, A and B). To test whether drug-induced mitochondrial alterations were sufficient to cause nuclear fragmentation, mitochondria isolated from drug-treated cells were incubated with nuclei in a CFS, and nuclear DNA loss was measured by flow cytometry. Mitochondria from Doxo- or Bet A-treated cells induced nuclear DNA fragmentation (Fig. 1C). This effect was blocked by overexpression of Bcl-2 or Bcl-XL, as well as by treatment of cells with Z-VAD.fmk or BA (Fig. 1C). Taken together, these experiments suggest that nuclear apoptosis induced by Doxo or Bet A indistinguishably depends on mitochondrial PT and caspase activation. However, the mechanism leading to the ΔΨm loss depends on which anticancer agent is used. In the case of Doxo, it requires the activation of Z-VAD.fmk-inhibitable caspases. In sharp contrast, Bet A triggers ΔΨm dissipation in a caspase-independent fashion.

Bet A Directly Triggers Mitochondrial PT. To investigate whether Bet A has a direct effect on mitochondria, we analyzed ΔΨm in isolated mitochondria treated with Bet A. Bet A caused a loss in ΔΨm in isolated mitochondria (Fig. 1D). This loss of ΔΨm was inhibited by Bcl-2 or Bcl-XL overexpression or by BA (Fig. 1D), indicating that the ΔΨm loss involved PT. However, the decline in ΔΨm was not blocked by Z-VAD.fmk (Fig. 1D), suggesting that Bet A can trigger PT through a direct effect on mitochondria.

Doxo Induces CD95-L and CD95 Upstream of Mitochondria. We previously found that Doxo induces the expression of CD95-L and CD95 in neuroblastoma cells (13). To determine whether up-regulation of CD95-L and CD95 in response to Doxo is modulated by mitochondrial PT, we analyzed the mechanism of Doxo-induced expression of CD95-L and CD95. Both CD95-L and CD95 were induced at the mRNA and protein level in Neo-transfected control cells and Bcl-2- or Bcl-XL-overexpressing cells (Fig. 2). No significant differences were observed with respect to the kinetics of CD95-L and CD95 induction (data not shown). A similar increase in CD95 and CD95-L expression was observed following treatment with cisplatinum or VP-16, irrespective of the expression of Bcl-2 or Bcl-XL (data not shown). These findings suggest that up-regulation of CD95-L and CD95 upon Doxo treatment occurs independently and upstream of mitochondria. In contrast, no up-regulation of CD95-L or CD95 was found at any time point following treatment with Bet A (Fig. 2, A and B), indicating that Bet A triggers apoptosis independently of the CD95-L/receptor system.

Connection of ΔΨm Disruption to Activation of the Caspase Cascade. Available data suggest that caspases can act either upstream or downstream of mitochondria (22, 23, 26, 35, 43). To investigate the functional relationship between mitochondrial events and activation of the caspase cascade, we monitored the effect of Bcl-2 and Bcl-XL on activation of the receptor-proximal caspase-8 and the downstream caspase-3 by Western blot analysis in cells treated with Doxo or Bet A. Upon treatment with Doxo, caspase-8 was cleaved into p43 and p41 intermediates and the active p18 subunit, regardless of Bcl-2 or Bcl-XL overexpression (Fig. 3A). In contrast, proteolytic processing of caspase-3 and PARP was inhibited in Bcl-2- and Bcl-XL-transfected cells (Fig. 3A). Similar data were obtained when cisplatinum or VP-16 were used as chemotherapeutic agents (data not shown). In contrast, when apoptosis was triggered by Bet A, processing of both caspase-8 and caspase-3 was inhibited by Bcl-2 or Bcl-XL. These data indicate that caspase-8 is cleaved upstream of a Bcl-2/Bcl-XL-controlled checkpoint after treatment with Doxo but downstream of this checkpoint following incubation with Bet A. In both cases, however, processing of caspase-3 and PARP was prevented by Bcl-2 or Bcl-XL.
MOLECULAR ORDERING OF DRUG-INDUCED APOPTOSIS

Fig. 1. Drug-induced apoptosis and mitochondrial PT. A–C, Doxo- and Bet A-induced apoptosis depends on mitochondrial PT and activation of caspases. SHEP cells transfected with Bcl-2 or Bcl-X, or a neomycin resistance vector only (Neo) were treated with 0.5 μg/ml Doxo or 10 μg/ml Bet A for 48 h (A) or 24 h (B and C). Cells transfected with a neomycin resistance vector only (Neo) were treated in the presence or absence of 50 μM BA or 60 μM Z-VAD.fmk. Nuclear apoptosis was determined by FACS analysis of propidium iodide-stained DNA content in intact cells (A) or in a CFS incubating isolated nuclei with mitochondria from cells treated with Doxo or Bet A (C). ΔΨm was determined by staining cells with the potential-sensitive fluorochrome DiOC6(3) (B). D, Bet A directly induces mitochondrial PT. Mitochondria isolated from SHEP cells transfected with Bcl-2 or Bcl-Xl or a neomycin resistance vector only (Neo) were treated with 10 μg/ml Bet A for 0.5 h. Cells transfected with a neomycin resistance vector only (Neo) were treated in the presence or absence of 50 μM BA or 60 μM Z-VAD.fmk. ΔΨm was determined by staining mitochondria with the fluorochrome DiOC6(3). D, the dotted line in the first histogram indicates the staining profile obtained in the presence of the ΔΨm-dissipating agent carbonyl cyanide m-chlorophenylhydrazone.

To further delineate the relationship between mitochondrial PT (which represents a Bcl-2-/Bcl-Xl-controlled event), induction of CD95-L, and caspase activity, cells treated with Doxo or Bet A were sorted into cells with still normal ΔΨm [DiOC6(3)high] and cells with a disrupted ΔΨm [DiOC6(3)low]. After incubation with Doxo, CD95-L induction and cleavage of caspase-8 were found in both ΔΨm high and ΔΨm low cells (Fig. 3B). However, only ΔΨm low cells displayed cleaved caspase-3 and PARP (Fig. 3B). A similar pattern of caspase cleavage was seen when cells were stimulated by CD95 cross-linking (Fig. 3B). This indicates that initiation of the apoptosis program by up-regulation of CD95/CD95-L and CD95-triggered caspase activation occurs upstream of mitochondria. In contrast, upon incubation with Bet A, only ΔΨm low cells displayed cleaved caspase-3 and caspase-8, in addition to processed PARP (Fig. 3B). Thus, caspase-8 activation occurred downstream of the ΔΨm dissipation in Bet A-induced apoptosis, whereas caspase-8 cleavage and CD95-L induction occurred upstream of the ΔΨm collapse in Doxo-induced apoptosis.

Caspase-8 Is Activated by Mitochondria Undergoing PT. Caspase-8 has been reported to be cleaved at the activated CD95 DISC upon CD95 cross-linking (10). To test whether caspase-8 could also be activated by mitochondria that have undergone PT after drug treatment, we used a CFS in which mitochondria isolated from drug-treated cells were incubated with cytosolic extracts from untreated cells. Then, processing of caspases was assessed by Western blot analysis. Mitochondria from Doxo- or Bet A-treated vector control cells induced cleavage of caspase-3, caspase-8, and PARP in cytosolic extracts (Fig. 4A). This effect was blocked by the broad-range caspase inhibitor Z-VAD.fmk, indicating that protease activity was required for activation of caspase-3 and caspase-8 (Fig. 4A). To confirm that cleavage of caspases depended on mitochondria undergoing PT, similar experiments were performed using Bcl-2- or Bcl-Xl-transfected cells in which mitochondria fail to undergo PT subsequent to Doxo or Bet A treatment (Fig. 1). Mitochondria from Bcl-2- or Bcl-Xl-overexpressing cells treated with Doxo or Bet A did not induce caspase cleavage in cytosolic extracts (Fig. 4A).
MOLECULAR ORDERING OF DRUG-INDUCED APOPTOSIS

Fig. 2. Activation of the CD95 system by Doxo occurs upstream of mitochondria. A, induction of CD95-L. SHEP cells transfected with Bcl-2 or Bcl-XL or a neomycin resistance vector only (Neo) were treated (Lanes +) with 0.5 µg/ml Doxo or 10 µg/ml Bet A for 24 h. CD95-L mRNA expression was determined by RT-PCR. Expression of β-actin was used to control RNA integrity and equal gel loading. For Western blot, 40 µg protein of cell lysates per lane were separated by 12% SDS-PAGE. CD95-L protein was detected as a Mr 37,000 band by mouse anti-CD95-L mAb and enhanced chemiluminescence. B and C, induction of CD95. SHEP cells transfected with Bcl-2 or Bcl-XL or a neomycin resistance vector only (Neo) were treated (Lanes +) with 0.5 ng/ml Doxo or 10 µg/ml Bet A for 24 h. CD95 mRNA expression was determined by RT-PCR. Expression of β-actin was used to control RNA integrity and equal gel loading. For Western blot analysis (B), 40 µg protein of cell lysates per lane were separated by 12% SDS-PAGE. Immunodetection of CD95 protein was performed by mouse anti-CD95 mAb and enhanced chemiluminescence. For FACS analysis of CD95 protein expression (O), cells were stained with mouse anti-APO-1 mAb followed by FITC-conjugated antimouse IgG antibody and analyzed by flow cytometry. Similar results were obtained in three separate experiments.

In addition to interfering with mitochondrial functions, Bcl-2 and Bcl-XL have been suggested to bind cytosolic pro-caspases via Apaf-1 to the mitochondrial membrane, thereby preventing their activation (27–34). Bcl-XL has recently been shown to prevent caspase-9 activation by interacting with Apaf-1 (46, 47). To test whether the inhibitory effect of Bcl-2 or Bcl-XL on caspase cleavage was due to a retention of caspases in the mitochondrial rather than cytosolic compartment, we performed mixing experiments. Mitochondria from vector control cells were incubated with cytosolic extracts of Bcl-2- or Bcl-XL-overexpressing cells and vice versa. Using mitochondria from vector control cells, cleavage of caspases was found in cytosolic extracts of Bcl-2- or Bcl-XL-overexpressing cells and vice versa. Using mitochondria from vector control cells, cleavage of caspases was found in cytosolic extracts of Bcl-2- or Bcl-XL-transfected cells (Fig. 4B). However, processing of caspases was inhibited when mitochondria from Bcl-2- or Bcl-XL-overexpressing cells were used in combination with cytosolic extracts of vector control cells (Fig. 4B). This indicates that deficient cleavage of caspases in Bcl-2- or Bcl-XL-overexpressing cells is directly related to blocked mitochondrial function rather than to direct or indirect effects, including sequestration of caspases from the cytosol.

Caspase-8 Is Cleaved by AIF-containing Mitochondrial Supernatant but not by cyt c. Upon PT, mitochondria have been reported to release cyt c from the intermembrane space into the cytosol (33, 34). Cyt c activates additional cytosolic factors (Apaf-1 and caspase-9) to trigger the activation of caspase-3 (31, 32, 44). After stimulation with Doxo or Bet A, mitochondrial cyt c levels declined while the concentration of ectopic, cytosolic cyt c increased (Fig. 5A). Enforced expression of Bcl-2 or Bcl-XL blocked the mitochondrial release of cyt c (Fig. 5A) in agreement with previous studies (29, 30, 38). We then tested whether cyt c could actually induce caspase activation. Addition of purified cyt c to cytosolic extracts resulted in the processing of caspase-3 and PARP in both vector control and Bcl-2-overexpressing cells (Fig. 5B), again indicating that the apoptogenic activity was preserved in the cytosol of Bcl-2-overexpressing cells. However, addition of cyt c to cytosolic extracts did not induce caspase-8 activation (Fig. 5B). Because mitochondria undergoing PT also release AIF that can proteolytically activate caspase-3 (23), we next investigated the effect of AIF on cytosolic extracts in *vitro*. Incubation of cytosolic extracts with AIF-containing mitochondrial supernatant resulted in cleavage of caspase-3, caspase-8, and PARP (Fig. 5B). Thus, different mitochondrial proteins released during PT activate distinct caspases involved in the apoptosis machinery.

DISCUSSION

Mitochondrial PT Constitutes a Central, Coordinating Event of Drug-induced Apoptosis. Several nonexclusive mechanisms have been proposed to play a key role in drug-induced apoptosis: activation of death-inducing ligand/receptor systems such as CD95, activation of caspases, or alterations of mitochondrial functions (12–19, 22–28). However, the sequence and functional relationship of these events have not been defined. The data presented here define a sequence between induction of the CD95 system, activation of the caspase cascade, and mitochondria in the regulation of drug-induced apoptosis by showing that mitochondrial PT is a central, coordinating event.
Molecular Ordering of Drug-Induced Apoptosis

Fig. 3

Functional relationship between $\Delta \Psi_m$ disruption and activation of the caspase cascade.

<table>
<thead>
<tr>
<th></th>
<th>Doxo</th>
<th>Bet A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bcl-2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Bcl-XL</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- **% $\Delta \Psi_m$ low**
 - Doxo: 10, 72, 8, 13, 7, 12
 - Bet A: 10, 69, 8, 15, 7, 13

- **Casp-8**
 - p43
 - p41
 - p18

- **Casp-3**
 - p17

- **PARP**
 - p85

Fig. 4

Activation of caspases in CFS.

- **A.** Caspase-8 is cleaved by mitochondria undergoing PT.
 - SHEP cells transfected with Bcl-2 or Bcl-XL or a neomycin resistance vector only (Neo) were treated (Lanes +) with 0.5 µg/ml Doxo or 10 µg/ml Bet A for 16 h. Mitochondria were isolated and incubated with cytosolic extracts for 6 h in the presence or absence of 60 µM Z-VAD.fmk. Western blot analysis was performed as described in Fig. 3A. B. Bcl-2 and Bcl-XL inhibit cleavage of caspases at the mitochondrial level. Mitochondria (mito) of Doxo- or Bet A-treated vector control cells (Neo) and Bcl-2- or Bcl-XL-overexpressing SHEP cells were incubated with cytosolic extracts of Bcl-2- or Bcl-XL-overexpressing cells and vector control cells, respectively, followed by immunodetection of caspase-3 and caspase-8, as described in Fig. 3A.

Counts

- **DIOC6(3) ($\Delta \Psi_m$)**
 - Control: 72%, 51%, 48%
 - Unseparated: 25%, 57%, 43%

- **Casp-8**
 - p43
 - p41
 - p18

- **Casp-3**
 - p17

- **PARP**
 - p85

Inhibition of PT by BA or by Bcl-2 or Bcl-XL prevented all manifestations of apoptosis at the level of the cytoplasm (caspase-3 activation and disruption of the $\Delta \Psi_m$) and the nucleus (PARP cleavage and loss of nuclear DNA). Different types of drugs, such as Doxo and Bet A, which clearly differ in their initial apoptosis-triggering mechanisms, eventually induce a BA-sensitive $\Delta \Psi_m$ disruption, indicative of PT. Events of the effector/degradation phase of apoptosis such as activation of caspase-3 and cleavage of substrates such as PARP are placed downstream of the PT-mediated $\Delta \Psi_m$ disruption, as indicated by the fact that these changes are only found in cells that have already lost their $\Delta \Psi_m$.
Caspses Act Upstream and Downstream of Mitochondria. The hierarchical relationship between mitochondria and activation of the caspase cascade appears to be complex, with several levels of interaction (22, 23, 33, 34, 51–53). First, proteases may act upstream of mitochondria. Cytotoxic drugs such as Doxo cause activation of the CD95 receptor-proximal caspase-8, upstream and independently of mitochondria. Caspase-8 activation was observed in cells with a still normal ΔΨ, and was not inhibited by Bcl-2 or Bcl-XL. Activated caspase-8 or other caspases may be involved in perturbing mitochondrial functions because Doxo-induced loss of mitochondrial membrane potential was inhibited by the broad-spectrum caspase inhibitor Z-VAD.fmk. The central role of mitochondria in mediating drug-induced cell death was further indicated by the finding that activated caspases, such as caspase-8, located upstream in the cascade, did not directly induce caspase-3 activation but rather involved a Bcl-2-/Bcl-X,-inhibitable, mitochondrial step. In addition, the data suggest that activation of upstream caspases does not represent the “point of no return” of the apoptotic process and are consistent with recent reports that Bcl-X, can function downstream of CD95-induced protease activation to prevent loss of ΔΨ (51–53).

Caspses may also act downstream of mitochondria (22, 23, 33, 34). Thus, cleavage of the downstream caspase-3 was only found in ΔΨ, cells. In addition, caspase-3 cleavage was induced by mitochondria undergoing PT in a CFS. Moreover, interfering with mitochondrial PT and with the mitochondrial release of cyt c and/or AIF by overexpression of Bcl-2 or Bcl-X, inhibited caspase-3 activation both in intact cells and in a CFS (23, 26, 29, 30, 38).

Caspase-8 cleavage was found both upstream and downstream of mitochondria, in line with recent reports (19, 50). Upon incubation with Doxo or anti-APO-1, caspase-8 is activated upstream of mitochondria, e.g., at the activated CD95 DISC (10), and is already cleaved in cells with a still intact ΔΨ,. However, upon treatment with Bet A, caspase-8 is cleaved downstream of mitochondria only in ΔΨ, cells, consistent with the finding that Bet A triggers apoptosis by a direct effect on mitochondria independently of CD95-L/receptor interaction (19). Cleavage of caspase-8 may be caused by activated mitochondria in the absence of DISC formation. Apoptogenic proteins released from mitochondria undergoing PT such as cyt c and AIF have been shown to induce cleavage of caspases (23). Our findings demonstrate that AIF can induce caspase-8 activation, possibly by a direct effect on caspase-8, because partially purified AIF can cleave recombinant caspase-8 (data not shown). However, cyt c did not cleave caspase-8, although it did induce caspase-3 activation, indicating that the mechanism of caspase-8 activation downstream of mitochondria differed from that of caspase-3. Moreover, because activated caspases may act on mitochondria (23), caspase-8, which is processed downstream of mitochondria, might engage in a self-amplifying apoptotic process by inducing mitochondrial PT, thereby locking the cell in an irreversible stage of apoptosis. Our findings also suggest a hierarchical order in the cascade of caspase activation (5, 6, 54). Thus, activated caspase-3, although capable of processing PARP, did not induce caspase-8 activation in a CFS (Fig. 5B). Caspses might appear to be dispensable for mediating DNA fragmentation because we found fragmentation of nuclei upon incubation with isolated mitochondria consistent with previous findings that AIF can directly induce DNA fragmentation. However, these preparations may still contain small amounts of cytosolic fractions that may mediate activation of downstream targets such as DNA fragmentation factor or caspase-activated deoxyribonuclease (55, 56).

Activation of the CD95 System Occurs Upstream and Independently of Mitochondria. Induction of CD95-L and CD95 occurred upstream of mitochondria because it was not inhibited by Bcl-2 or Bcl-X, and was also detected in ΔΨ, cells. At present, the molecular events regulating CD95 or CD95-L expression in response to cytotoxic drug treatment are only partially understood and may be mediated by ceramide generated through activation of sphingomyelinas and the c-jun NH2-terminal kinase/stress-activated protein kinase-dependent stress pathway (57, 58). Intracellular reduced glutathione levels, previously found to be involved in modulation of...
bicin is modulated by the redox state in chemosensitive- and drug-resistant tumor cells, class of cytotoxic drugs exemplified by Bet A may directly trigger tor-driven amplifier systems resulting in caspase-8 activation down-
mitochondrial PT and apoptosis without activation of ligand-/recep-
participate in perturbing mitochondrial functions. In contrast, another
of ligand-/receptor-driven amplifier systems such as CD95/CD95-L signaling events, including ceramide generation (60), might then
linking, pro-caspase-8 is cleaved at the activated CD95 DISC up
by drugs such as Doxo, cisplatinum, or VP-16. Through CD95 cross-
where they converge into the common effector phase of apoptosis.

different entry sites before passing the mitochondrial checkpoint,
tosis, different classes of drugs may enter the apoptotic machinery at
cell types with different drugs. During the initiation phase of apop
acally highlights two different entry sites that may overlap in certain
cytotoxicity of neuroblastoma cells (Fig. 6). The scheme prototypi-
cytofluorometric anal
the mechanisms of chemoresistance, and to develop strategies to
apoptotic mode of action of chemotherapeutic agents, to understand
might bypass the requirement for upstream signaling and mitochon
program. On the other hand, direct activa-
induction of the apoptosis program. Thus, on the other hand, direct activa-
DNA fragmentation factor and caspase-activated desoxyribonuclease
Release of cyt c from mitochondria may also occur inde-

Thus, mitochondria play a central role in the regulation of drug-
hibited apoptosis by controlling activation of downstream effector proteases. The molecular ordering of drug-induced apoptosis defined in our studies may also have implication for tumor therapy directed toward activation of apoptosis effector systems. Triggering of CD95/CD95-L interaction and activation of caspase-8 in cells overexpressing Bcl-2-related oncoproteins seems to be largely inefficient for induction of the apoptosis program. On the other hand, direct activation of caspase-3 might bypass the requirement for upstream signaling and mitochondrial function. Thus, our findings may be useful to define the pro-apoptotic mode of action of chemotherapeutic agents, to understand the mechanisms of chemoresistance, and to develop strategies to improve the efficacy of anticancer therapy.

ACKNOWLEDGMENTS

We thank Didier Métivier (Centre National de la Recherche Scientifique-Unité Propre de Recherche 420, Villejuif, France) for cytofluorometric analyses; Gabriel Núñez and Mary Benedict (University of Michigan Medical School, Ann Arbor, MI) for SHEP-Neo, -Bcl-2, and -Bcl-XL transfectants; and Carsten Scaffidi, Marcus E. Peter, and Peter H. Krammer for anti-FLICE antibody.

REFERENCES

2. Behm, A., Behrmann, I., Falk, W., Pavlića, M., Maier, G., Klas, C., Li-Weber, M.,

MOLECULAR ORDERING OF DRUG-INDUCED APOPTOSIS

Fig. 6. Hypothetical scenario for drug-induced apoptosis in neuroblastoma cells. See text for details. Doxo, Bet A, CD95, CD95-L, mitochondria, cyt c, AIF, caspase-3, and caspase-8 are indicated. Multiple arrows, putative intermediate steps.

CD95-L expression, were similar in vector control and Bcl-2- or Bcl-XL-overexpressing cells, consistent with similar expression levels of CD95-L (data not shown). Also, wild-type p53, which has been implicated in up-regulation of CD95 expression (59), similarly accumulated upon Doxo treatment regardless of Bcl-2 or Bcl-XL overexpression (data not shown), leading to a similar increase in CD95 expression in these cells.

Hypothetical Scenario for Drug-induced Apoptosis. This work, together with our previous studies (12–19, 22–28), suggests the following scenario for activation of apoptosis programs in drug-induced cytotoxicity of neuroblastoma cells (Fig. 6). The scheme prototypically highlights two different entry sites that may overlap in certain cell types with different drugs. During the initiation phase of apoptosis, different classes of drugs may enter the apoptotic machinery at different entry sites before passing the mitochondrial checkpoint, where they converge into the common effector phase of apoptosis. Entry into the apoptosis program may be triggered through activation of ligand-/receptor-driven amplifier systems such as CD95/CD95-L by drugs such as Doxo, cisplatinum, or VP-16. Through CD95 cross-linking, pro-caspase-8 is cleaved at the activated CD95 DISC upstream of mitochondria. Activated caspase-8 or caspase-8-dependent signaling events, including ceramide generation (60), might then participate in perturbing mitochondrial functions. In contrast, another class of cytotoxic drugs exemplified by Bet A may directly trigger mitochondrial PT and apoptosis without activation of ligand-/receptor-driven amplifier systems resulting in caspase-8 activation down-stream of mitochondria. Despite different entries into the apoptosis programs, cytotoxic drugs eventually induce a Bcl-2-/Bcl-XL-controlled ΔΨm disruption that marks the initiation of a common effector phase of apoptosis. Upon mitochondrial PT, apoptogenic proteins such as cyt c and AIF are released from mitochondria into the cytosol, where they induce activation of downstream targets such as PARP and cell death executioners, such as DNA fragmentation factor and caspase-activated desoxyribonuclease (55, 56). Release of cyt c from mitochondria may also occur inde-

Molecular Ordering of Apoptosis Induced by Anticancer Drugs in Neuroblastoma Cells

Simone Fulda, Santos A. Susin, Guido Kroemer, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/58/19/4453

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.