Voluntary Running Prevents Progressive Memory Decline and Increases Adult Hippocampal Neurogenesis and Growth Factor Expression after Whole-Brain Irradiation

Sarah J.E. Wong-Goodrich, Madeline L. Pfau, Catherine T. Flores, Jennifer A. Fraser, Christina L. Williams, and Lee W. Jones

Abstract

Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

Introduction

Whole-brain irradiation (WBI) therapy is a treatment mainstay for patients with primary or metastatic brain tumors and is also given as a prophylactic treatment for advanced solid tumors. However, WBI causes progressive and persistent learning and memory deficits that impair quality of life and predict survival independent of tumor progression (1–4). A lack of gross structural neurologic change and/or peripheral tissue damage following WBI suggests more subtle neural dysfunction (2). For example, adult hippocampal neurogenesis, which has been implicated in aspects of learning and memory (5–8), is severely diminished weeks to months following WBI in rodents (9–11) and in postmortem analyses of patients who underwent brain irradiation (12). Given the devastating consequences, interventions to mitigate or prevent radiation-induced deficits in neural and cognitive function are needed.

Exercise (voluntary wheel running) improves learning and memory in animal models of aging (13), stroke (14), and Alzheimer’s disease (15). In humans, aerobic exercise is associated with reduced risk for Alzheimer’s disease, dementia, and cognitive decline in elderly individuals (16–18). These benefits may be mediated in part by enhanced hippocampal neurogenesis. Exercise increases cell proliferation and neuronal differentiation in the dentate gyrus of healthy adult and aged rodents and those with compromised plasticity (13, 14, 19), and these neuroplastic changes have been associated with improved memory (13, 14, 19).

Few studies have examined the effects of exercise on cognitive and neurogenic function following cranial irradiation in adulthood. Moreover, the results have been inconsistent, with exercise either rescuing (21, 22) or having no effect (8, 23) on hippocampal neurogenesis after irradiation. The behavioral tasks used in these studies (8, 21, 23) may
not have been sensitive to detecting irradiation-induced deficits. Therefore, it remains unclear whether exercise improves memory after irradiation, and no studies to date have examined molecular mechanisms of exercise in this context.

We investigated the effects of voluntary wheel running on spatial learning and memory (recent and remote) using a Barnes maze task, and hippocampal neurogenesis in an adult mouse model of WBI. We also examined whether alterations in hippocampal growth factor expression potentially contribute to exercise-induced neurogenesis and protection against cognitive decline following irradiation.

Materials and Methods

Animals

Forty 8-week-old female C57BL/6 mice (Harlan Laboratories) socially housed five per cage in ventilated shoebox cages with standard chow and water *ad libitum* served as subjects. We chose female mice because female patients experience more adverse cognitive symptoms than males following cranial radiation (24, 25). All procedures were approved by the Institutional Animal Care and Use Committee of Duke University. At 12 weeks of age, all mice were anesthetized with 100 mg/kg ketamine plus 10 mg/kg xylazine and given sham (Sham; *n* = 20) or bilateral cranial irradiation (IRR; *n* = 20), using a 350-kV orthovoltage radiator while the body was shielded by a lead plate. IRR mice received a single dose of 5 Gy X-ray irradiation at a dose rate of 258 cGy/min; this dose has been shown to produce reliable deficits on hippocampal-dependent tasks and reduce neurogenesis in mice (9, 26). Figure 1 presents the timeline of all experimental procedures.

Mice were given a tail suspension test (TST) at 2 weeks and 2.5 months after irradiation to assess depressive-like behavior (ref. 27; see Supplementary Methods). Mice were also trained on the Barnes maze at 2.5 weeks (BM1), 3 months (BM2), and 4 months (BM3) after irradiation to assess short- and long-term cognitive effects of WBI. All behavioral testing occurred during the dark phase of the 12/12-h light-dark cycle.

Following BM1 (~1 mo post-WBI), Sham and IRR mice remained socially housed in their home cage (Sham and IRR) or were socially housed and given individual daily access to a running wheel (Sham-Run and IRR-Run) for the remainder of the experiment. There were no significant within-group differences for Sham versus Sham-Run or IRR versus IRR-Run mice on any behavioral measure collected at BM1. Sham-Run and IRR-Run mice were removed from their home cage during their dark phase and placed individually into a new cage with food and water *ad libitum* and a running wheel (10.9 cm in diameter) equipped with a wireless device that recorded the number of wheel revolutions per day for each mouse (Wheel Manager, Med Associates). Wheel access varied between 8 and 12 hours from each day, but total wheel access on a given day was identical for all mice. After 6 weeks, all four groups were retested on the TST and Barnes maze (BM2 and BM3).

Immediately before BM3, all mice were injected i.p. with bromodeoxyuridine (BrdUrd; 150 mg/kg; Sigma) for five consecutive days to label newborn cells in the hippocampus and were sacrificed 3 weeks later to assess cell survival and differentiation.

Barnes maze

Mice were trained on a circular Barnes maze to assess spatial learning and memory (28). In brief, mice were trained to locate a hole (of 20, which were equally spaced around the perimeter of the circular platform that was divided into four quadrants with five holes per quadrant), which led to an escape box. Mice received three training trials per day in a well-lit room with salient extramaze cues for 3 days (90 s trial maximum; ~10 min intertrial interval), followed by one 30-s probe trial (with no escape cue) at 1 hour and 4 days (and 18 d for BM2 and BM3) after the last training trial. A single
training trial with the escape box in place was given immediately after each probe trial to prevent extinction of prior learning. At the end of BM1 testing, mice were given one training trial with a curtain around the maze to assess the use of extramaze cues. The hole location was in a different maze quadrant for BM2 and BM3 sessions. Latency to locate the escape hole (learning) and total time spent in each quadrant on probe trials (memory) were recorded with a computerized video tracker (HVS Image) for statistical analyses. Although analyses of hole approaches (errors) revealed a similar pattern of findings, we found that time was the most reliable measure.

Histology

Three weeks after the last BrdUrd injection, mice were anesthetized with ketamine (i.p., 80 mg/kg) and xylazine (i.p., 10 mg/kg) and transcardially perfused with ice-cold saline. Brains were rapidly harvested and midsagittally sectioned. The hippocampus from one-half brain was dissected immediately for protein analyses and stored at −80°C until assayed. The other half-brain was immediately postfixed in 4% paraformaldehyde in 0.1 mol/L phosphate buffer for 48 hours, then cryoprotected in 30% sucrose in 0.1 mol/L phosphate buffer for 24 hours. These half-brains were sectioned coronally at 60 μm on a freezing microtome through the extent of the hippocampus, and every fifth section was collected in 0.1% sodium azide in 0.1 mol/L phosphate buffer.

Peroxidase BrdUrd immunolabeling procedures were performed on free-floating sections as previously described (29). After denaturing, sections were first incubated in a mouse-on-mouse blocking reagent (Vector Laboratories) for 1 hour before being incubated with the mouse anti-BrdUrd primary antibody (1:400; Roche). For triple immunofluorescent labeling of BrdUrd, neuronal nuclei (NeuN), and glial fibrillary acidic protein (GFAP), staining was performed as previously described (29). Sections were incubated for 3 days in a primary antibody cocktail that included polyclonal sheep anti-BrdUrd (1:100; Abcam), monoclonal mouse anti-NeuN (1:50; Millipore), and polyclonal rabbit anti-GFAP (1:500; Abcam). The fluorescent secondary antibodies used were biotinylated anti-sheep (1:200; Jackson Immuno) and streptavidin-conjugated Alexa Fluor 555 antibody to detect BrdUrd (1:500; Molecular Probes), Alexa Fluor 488 antimouse (1:200; Molecular Probes), and Cy5 anti-rabbit (1:200; Jackson Immuno).

Quantification of BrdUrd+ and BrdUrd colabeled cells

For peroxidase-stained tissue, every fifth section through the extent of the dentate gyrus was counted for the total number of BrdUrd+ cells in eight sections per mouse. Contours were drawn around a region that encompassed the suprapyramidal and infrapyramidal granule cell blades and subgranular zone. We used a modified fractionator principle using StereoInvestigator (Microbrightfield Inc.) to move exhaustively throughout each region, using an optical dissector height of 20 μm with a 4-μm guard zone, and counted stained cells at 40× on a Nikon light microscope. To generate estimates of BrdUrd+ cells per brain, counts were multiplied by 5 and then by 2 to account for both hemispheres. Dentate gyrus volume estimates were generated using the optical fractionator and according to Cavalleri’s principle (30), and also multiplied by 2. For phenotypic analysis of BrdUrd+ cells colabeled with NeuN or GFAP, at least 25 BrdUrd+ cells per subject (n = 5 per group) were analyzed using a Zeiss Axio Observer inverted confocal laser-scanning microscope equipped with LSM 510 software. BrdUrd+ cells were individually examined for the coexpression of NeuN or GFAP using z-sectioning at 1-μm intervals at a 40× objective.

Enzyme-linked immunosorbent assays

Hippocampal tissue was thawed and lysed using T-PER Tissue Protein Extraction Reagent (Thermo Scientific) as described by the manufacturer. Collected protein was measured using Quantikine colorimetric sandwich enzyme-linked immunosorbent assays (R&D Systems) for brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor-I (IGF-I), tumor necrosis factor-α (TNF-α), IPN-γ, and interleukin-6 (IL-6), as per manufacturer’s instructions.

Statistical analysis

All data are presented as means ± SEM. Using an α level of 0.05, data were analyzed using ANOVA and a priori comparisons where appropriate.

Results

WBI slows spatial learning 2.5 weeks after treatment

Both Sham and IRR mice exhibited decreasing escape latencies from days 1 to 3 of training (main effect of Day: F2,76 = 51.92, P < 0.001). On day 2, Sham mice achieved asymptotic performance and had faster mean escape latencies than IRR mice (P < 0.05), whereas IRR mice required an additional day of training to reach performance levels equivalent to Sham mice (Fig. 2A), indicating slower spatial learning. There were no group differences in short- or long-term retention of the escape hole location at 1 hour and 4 days following training with both groups spending significantly more time in the target quadrant than all other quadrants (all Ps < 0.05; Fig. 2B). After extramaze cues were obscured, latency to find the escape hole increased for both Sham and IRR mice, indicating that all mice used extramaze cues for navigation, which relies on the hippocampus (ref. 31; Fig. 2C). WBI did not significantly alter total immobility time on the TST; modest effects were detected only during the initiation of the task (Supplementary Fig. S1).

Running prevents spatial memory retention decline up to 4 months after WBI

The first 6 weeks of running (initiated ~1 mo after WBI) constituted the longest period during which running was undisturbed by behavioral training. During this period, IRR-Run mice ran significantly less each day (6.92 ± 0.56 km) than Sham-Run mice (8.58 ± 0.52 km; P < 0.05). Although WBI adversely affected voluntary wheel running behavior (Fig. 3A), both IRR-Run and Sham-Run mice ran substantial distances
with 95% of mice averaging >40 km/week. All mice seemed healthy; body weight did not differ among groups (Fig. 3B). For BM2 testing (3 mo post-WBI), mean escape latencies from days 1 to 3 of training were decreased in all groups (main effect of Day: F$_{2,72} = 23.61$, P < 0.01; Fig. 3C). IRR-Run mice had significantly longer escape latencies than all other groups on day 1 (P < 0.05), but all mice had equivalent mean escape latencies by day 3 (Fig. 3C). Sham and Sham-Run mice showed a significant target quadrant bias during the 1-hour and 4-day probe (all Ps < 0.05), indicating that running enhanced spatial memory retention in Sham mice. In contrast, IRR mice did not show a significant target quadrant preference during the 1-hour and 4-day probe trials, but spent a similar amount of time searching both the target and adjacent left quadrants (Fig. 3D). This behavioral pattern in IRR mice was not initially detected at 2.5 weeks post-WBI (Fig. 2B), revealing that spatial memory retention at short and intermediate delays in IRR mice declined substantially over time. In contrast, IRR-Run mice performed comparably to Sham mice, spending significantly more time in the target quadrant than all other quadrants during both the 1-hour and 4-day probe (Ps < 0.05) and showing a tendency toward a target quadrant bias during the 18-day probe (Fig. 3D). Results of BM3 testing (4 mo post-WBI) were consistent with BM2 testing in that IRR mice continued to show poor memory, which was rescued in IRR-Run mice (Supplementary Fig. S2). WBI and running also had no effect on total immobility time in the second TST; again, modest effects were detected only during the initiation of the task (Supplementary Fig. S1).

Running partially restores adult hippocampal neurogenesis and increases growth factor expression after WBI

Three weeks after the last BrdUrd injection, IRR mice had 70% fewer BrdUrd+ cells in the dentate gyrus compared with Sham mice (main effect of WBI: F$_{1,34} = 42.65$, P < 0.01; Fig. 4A and C). Running had no effect on the number of BrdUrd+ cells in Sham mice, but significantly increased the number of BrdUrd+ cells in IRR mice by 87% (WBI × Running interaction: F$_{1,34} = 5.04$, P < 0.05; Fig. 4A and C). There were no significant group differences in dentate gyrus volume (Fig. 4B). BrdUrd+ cells were examined for coexpression of the mature neuronal marker NeuN or the astrocyte marker GFAP (n = 5 per group; Fig. 4D). Overall, WBI decreased the proportion of BrdUrd+/NeuN+ cells (F$_{1,15} = 43.47$, P < 0.001), reducing neurogenesis in IRR mice by more than half compared with Sham mice (P < 0.01), whereas running significantly enhanced the proportion of BrdUrd+/NeuN+ cells in both Sham and IRR mice (F$_{1,15} = 29.99$, P < 0.001; Table 1). Notably, IRR-Run mice had an increase in the percentage of BrdUrd+/GFAP+ neurons that was comparable with that which was observed in Sham mice (Table 1); these percentages are consistent with those reported in mice 3 to 4 weeks following BrdUrd administration (13, 32, 33). There were no effects of WBI or running on BrdUrd+/GFAP+ cells, but WBI

![Figure 2](image-url)
led to an overall increase in the proportion of BrdUrd+ cells that expressed neither NeuN nor GFAP ($F_{1,15} = 17.12, P < 0.01$), whereas running effectively decreased this proportion ($F_{1,15} = 4.95, P < 0.05$). These data suggest that running may have altered the rate of neuronal differentiation, neuronal maturation, and/or rate of newborn activated microglia in the dentate gyrus following irradiation (34), which we did not quantify in the current study. However, hippocampal levels of proinflammatory cytokines TNF-α, INF-γ, and IL-6 (secreted by activated microglia) were similarly elevated in both IRR and IRR-Run mice (TNF-α, $F_{1,35} = 500.07, P < 0.001$; INF-γ, $F_{1,35} = 1,102.29, P < 0.001$; IL-6, $F_{1,35} = 443.90, P < 0.001$) compared with negligible levels in Sham and Sham-Run mice (Fig. 5).

WBI decreased hippocampal BDNF by 33% ($F_{1,35} = 20.85, P < 0.01$) and VEGF by 38% ($F_{1,35} = 17.31, P < 0.01$) and increased IGF-I by 194% ($F_{1,35} = 165.56, P < 0.001$; Fig. 6). Running did not alter BDNF or VEGF in Sham mice, but partially restored levels of VEGF in IRR mice ($P < 0.05$; Fig. 6B). Running also had an overall effect on IGF-I protein.
Discussion

We report that WBI-induced memory decline is prevented by daily voluntary running initiated 1 month after irradiation. This behavioral rescue was accompanied by a partial restoration of neurogenesis in the dentate gyrus and increased expression of VEGF and IGF-I in the hippocampus. These protective effects seemed to be independent of persistent hippocampal neuroinflammation, although we cannot rule out the possibility that exercise altered rates of dentate-specific microglia proliferation following radiation. Our findings suggest that exercise may aid recovery of hippocampal function, neurogenesis, and growth factor expression following cranial irradiation.

Our findings are consistent with prior work showing hippocampal memory deficits several weeks to months following cranial irradiation (6, 11, 26, 35), but to our knowledge, our study is the first to reveal a progressive deterioration of memory and protection by exercise after cranial irradiation. Our irradiated mice showed intact spatial memory shortly after WBI, but then developed memory dysfunction over time, perhaps due to deterioration of memory consolidation and/or increased interference from prior learning. These data are remarkably similar to that reported in patients receiving WBI therapy and show progressive cognitive decline months to years after treatment (1–4), suggesting that our WBI treatment to adult mice is a clinically relevant model.

Our findings that WBI caused a progressive loss of memory that can be rescued by exercise are consistent with a previous study showing protection against spatial memory deficits by environmental enrichment that included shared access to a running wheel (36). However, our findings seem contrary with other work in this field. These discrepancies may be partially explained by several contributing factors. Unlike our study, previous reports only assessed memory function at a single time point several weeks after irradiation, and prior studies

Table 1. Phenotype of BrdUrd+ cells in the dentate gyrus

<table>
<thead>
<tr>
<th></th>
<th>% NeuN+</th>
<th>% GFAP+</th>
<th>% Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>45.64 (6.97)</td>
<td>21.24 (3.39)</td>
<td>33.11 (7.71)</td>
</tr>
<tr>
<td>Sham-Run</td>
<td>64.00 (2.56)*</td>
<td>14.97 (2.88)</td>
<td>21.03 (4.22)</td>
</tr>
<tr>
<td>IRR</td>
<td>20.33 (3.22)*</td>
<td>22.24 (4.51)</td>
<td>57.43 (5.81)*</td>
</tr>
<tr>
<td>IRR-Run</td>
<td>41.60 (2.73)*</td>
<td>14.34 (5.04)</td>
<td>44.05 (2.77)</td>
</tr>
</tbody>
</table>

NOTE: Mice in each group received five daily injections (150 mg/kg/d) of BrdUrd and were sacrificed 21 d later. Percentages of BrdUrd+ cells double labeled for NeuN (mature neurons), GFAP (mature astrocytes), or neither (Other) were analyzed (n = 5 per group). Data are presented as mean group (± SEM).

*Significantly different from Sham group at P < 0.01.
†Significantly different from IRR group at P < 0.01.

in both Sham and IRR mice ($F_{1,34} = 16.78$, $P < 0.001$). Although IGF-I was increased ∼2-fold in IRR mice compared with Sham mice, running further augmented this effect to ∼3-fold (WBI × Running interaction: $F_{1,35} = 6.70$, $P < 0.05$; Fig. 6C).
in mice used behavioral tasks that did not capture radiation-induced memory impairments (8, 21), with one study showing that radiation inhibited the memory enhancement caused by running (21). There may also be species differences in cognitive vulnerability to cranial irradiation: contextual fear conditioning after irradiation remains intact in adult mice (8, 21, 32), but is compromised and not rescued by running in adult rats (23, 32). It also seems that some, but not all, types of hippocampal-dependent tasks are sensitive to cranial irradiation: contextual fear conditioning after irradiation remains intact in adult mice (8, 21, 32), but is compromised and not rescued by running in adult rats (23, 32). Moreover, cranial irradiation in mice impairs memory examined using a Barnes maze, but not the Morris water maze (11). Memory retention as assessed using the Barnes maze may thus be a particularly sensitive measure for identifying cognitive deficits in mice and for revealing the beneficial effects of exercise following cranial irradiation.

Several studies have shown that exercise reliably increases adult hippocampal neurogenesis and improves cognitive performance (13, 19, 20), whereas neurogenesis and hippocampal-dependent memory are reduced by various ablation methods (5–8, 11, 26, 32), strongly supporting a relationship between adult hippocampal neurogenesis and memory function. In our study, WBI diminished neurogenesis, did not eliminate spatial learning, but progressively impaired spatial memory retention. This delayed cognitive impairment after WBI may be explained by the loss of new neurons or by alterations in newborn granule cell functionality. Indeed, dentate granule cell immediate-early gene Arc expression is decreased at 2 months, but not 1 week after WBI (38). Studies that did not report radiation-induced cognitive deficits have also observed running-induced increases in hippocampal neurogenesis after cranial irradiation in adult (21) and juvenile mice (22), but see refs. (8, 23). Here, we observed that post-WBI exercise caused a partial recovery of neurogenesis and protected against spatial memory loss.

Interestingly, running increased neurogenesis despite radiation-induced elevations in hippocampal proinflammatory cytokines, which inhibit adult hippocampal neurogenesis (34), suggesting that exercise may trigger molecular signals that override this inhibitory effect. Indeed, we discovered that post-WBI running increased expression of hippocampal VEGF and IGF-I, growth factors known to mediate exercise-induced enhancements in neurogenesis and spatial memory (39–41). Little is known, however, about the hippocampal neurotrophic milieu following cranial irradiation, with one study reporting decreased VEGF and no change in BDNF expression at ∼3 weeks postirradiation (42). Thus, we provide new evidence for decreased hippocampal BDNF and VEGF expression and a striking increase in IGF-I months after WBI, suggesting that the neurogenic consequences of postirradiation fluctuations in hippocampal growth factor expression may be specific for each factor. IGF-I, in particular, may play a primary role in restoring neurogenesis following irradiation because it has been shown to antagonize inflammatory microglia activation and protect hippocampal...
function (43). Future studies are needed to further investigate this question.

We did not detect a significant recovery in hippocampal BDNF following ~2 months of exercise, but the contribution of BDNF cannot be completely disregarded. BDNF signaling is one central mechanism underlying improved memory with exercise (44, 45). It is possible that there was a rapid initial recovery of BDNF following radiation that was not detected. We measured running-induced changes in local growth factor expression, but these growth factors are also produced peripherally (44). It was not possible to measure growth factor content peripherally in our mice because they were saline-perfused at sacrifice. Thus, exercise may be stimulating both central nervous system-derived and peripherally derived growth factors that trigger a host of signaling cascades, which lead to improved hippocampal neuroplasticity and cognitive outcomes (44).

A surprising finding was the lack of effect of running on the number of BrdUrd+ cells in our Sham mice, which is contrary to previous reports (8, 13, 39–41). It is possible that the effect of running on cell proliferation waned with time (20, 46), or that neurogenesis in Sham mice was at ceiling because mice received considerable spatial learning and physical activity on the Barnes maze (47). However, running did increase the percentage of new neurons and improved memory in Sham mice, which is consistent with previous findings (13, 21). Alternately, the observed benefits of exercise in both Sham and irradiated mice may also be due to enhancements in other features of adult hippocampal plasticity (19, 48, 49).

Our findings indicate that exercise may be a promising adjunct therapeutic strategy to facilitate recovery of hippocampal function and neurogenesis following WBI. To this end, there are several points to consider when interpreting our data. First, we chose to study young adult female mice because female patients experience more adverse cognitive symptoms than males following cranial radiation (24, 25). Studies are needed to examine whether exercise-induced improvements in neurogenesis are influenced by sex, estrogen status, and/or age. Second, radiation dose is also an important consideration. Intriguingly, we found a marked decline in memory function with a relatively low dose of WBI. Patients, in general, receive much higher doses of radiation, suggesting that the incidence of cognitive dysfunction is likely much higher than currently suspected. Prospective studies using more comprehensive neuropsychological tests in combination with novel imaging platforms to assess the incidence and pathogenesis of injury in patients receiving WBI are needed. Finally, in this study, mice ran, on average, 40 km/week and the comparable amount of exercise required to produce equivalent protective properties in humans is not known. However, our group and others have shown that structured exercise training is a feasible and well-tolerated therapy associated with significant and potentially important improvements in a range of biopsychosocial outcomes in patients undergoing chemoradiation for early and advanced cancer (for a review, see ref. 50). We contend that our findings provide "proof of concept" evidence to aid design of clinical trials to investigate the efficacy of exercise in cancer.
patients undergoing WBI. In summary, our findings show that running can prevent memory decline and aid recovery of adult hippocampal plasticity following WBI, thus highlighting exercise as a potential therapeutic intervention.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

Grant Support

AG09525 (C.L. Williams), CA143254, CA138634, CA133895, and CA125458 (L.W. Jones), and funds from George and Susan Beischer.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received 05/24/2010; revised 09/12/2010; accepted 09/13/2010; published OnlineFirst 09/30/2010.

Voluntary Running Prevents Progressive Memory Decline and Increases Adult Hippocampal Neurogenesis and Growth Factor Expression after Whole-Brain Irradiation

Sarah J.E. Wong-Goodrich, Madeline L. Pfau, Catherine T. Flores, et al.

Cancer Res 2010;70:9329-9338. Published OnlineFirst September 30, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-1854

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2010/10/01/0008-5472.CAN-10-1854.DC1.html

Cited articles
This article cites 48 articles, 15 of which you can access for free at:
http://cancerres.aacrjournals.org/content/70/22/9329.full.html#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/70/22/9329.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.