Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Tumor Biology

Abstract 3491: Development of a new approach to kill non-small cell lung cancer cells with resistance to standard chemotherapy using parthenolide analogues

Diana C. Márquez-Garbán, Gang Deng, Hsiao-Wang Chen, Hermes J. Garbán, Michael E. Jung and Richard J. Pietras
Diana C. Márquez-Garbán
1UCLA, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gang Deng
1UCLA, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hsiao-Wang Chen
1UCLA, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hermes J. Garbán
2Los Angeles Biomedical Institute at Harbor-UCLA Medical Center, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael E. Jung
1UCLA, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard J. Pietras
1UCLA, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1538-7445.AM2012-3491 Published April 2012
  • Article
  • Info & Metrics
Loading
Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL

Abstract

Lung cancer is the leading cause of cancer death in men and women worldwide. The poor prognosis of advanced non-small cell lung cancer (NSCLC) is due, in part, to emergence of tumor resistance to chemotherapy. Recent data indicate that human tumors including NSCLC contain a small subset of cancer stem/ progenitor cells (CSC) responsible for drug resistance and tumor maintenance. If such minute subsets of CSC drive tumor formation and drug resistance, therapies targeting the bulk tumor mass but not CSC will fail. We now confirm identification of subpopulations of chemotherapy-resistant human NSCLC cells with enrichment for CSC biomarkers and exhibiting significant CSC activity. We identified CD133+/ALDH+ tumor stem/progenitor cells from human lung cancer cells in vitro using established Aldefluor assays in combination with labeled anti-CD133 antibodies. Estrogen, a known risk factor for lung cancer progression, stimulated a modest increase in the numbers of CSC. In contrast to control CD133-/ALDH- tumor cell subsets, CSC subpopulations grew as tumor spheres and maintained self-renewal capacity in vitro and exhibited a greater tumorigenic capability than non-CSC subsets in vivo, properties indicative of CSC. Furthermore, resistance of CSC-like cells to cisplatin (a standard chemotherapy for NSCLC treatment) was fully reversed by treatment with parthenolide (PTL), a naturally-occurring sesquiterpene lactone compound with strong antitumor activity in leukemia and prostate cancer while sparing normal cells. The antitumor effect of PTL appears due to its action as a potent inhibitor of nuclear factor-βB (NF-κB) which is markedly activated by chemotherapy. To target CSC and suppress tumor progression, we synthesized and tested novel analogs of PTL with improved antitumor properties and aqueous solubility. PTL analogs inhibit proliferation of H157 NSCLC cells using both bulk cell preparations and CSC-subpopulations, with effects significantly different from control at P<0.05. Dose-dependent increments of PTL analogs increase apoptosis of CSC when compared with bulk cells. Moreover, PTL analogs inhibit cell proliferation of H23, A549 and H1975 NSCLC cells with known resistance to cisplatin (P<0.01). These compounds were able to sensitize cells to cisplatin-induced cytotoxicity (P<0.01) when cells were exposed to sub-optimal concentrations of cisplatin. Using Western blots, we find that PTL congeners inhibit phosphorylation of the p65 subunit of phospho-NF-κB and activation of IKKα/β. Thus, targeted inhibition of NF-κB may reverse tumor drug resistance by interfering with known NF-κB actions to regulate genes involved in proliferation, DNA damage response, antiapoptosis and angiogenesis. Further development of PTL analogs as therapeutics may lead to new strategies to treat NSCLC in the clinic. [Funded by CDMRP Lung Cancer Research Program LC 090297].

Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3491. doi:1538-7445.AM2012-3491

  • ©2012 American Association for Cancer Research
Back to top
Cancer Research: 72 (8 Supplement)
April 2012
Volume 72, Issue 8 Supplement
  • Table of Contents
  • Index by Author

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract 3491: Development of a new approach to kill non-small cell lung cancer cells with resistance to standard chemotherapy using parthenolide analogues
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Abstract 3491: Development of a new approach to kill non-small cell lung cancer cells with resistance to standard chemotherapy using parthenolide analogues
Diana C. Márquez-Garbán, Gang Deng, Hsiao-Wang Chen, Hermes J. Garbán, Michael E. Jung and Richard J. Pietras
Cancer Res April 15 2012 (72) (8 Supplement) 3491; DOI: 10.1158/1538-7445.AM2012-3491

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract 3491: Development of a new approach to kill non-small cell lung cancer cells with resistance to standard chemotherapy using parthenolide analogues
Diana C. Márquez-Garbán, Gang Deng, Hsiao-Wang Chen, Hermes J. Garbán, Michael E. Jung and Richard J. Pietras
Cancer Res April 15 2012 (72) (8 Supplement) 3491; DOI: 10.1158/1538-7445.AM2012-3491
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tumor Biology

  • Abstract SY34-04: Do we need to know what pO2 hypoxia is
  • Abstract SY28-04: Rational incorporation of novel agents into multimodality treatment of glioma and neuroblastoma
  • Abstract SY28-02: Connections in the BRCA1-BRCA2 pathway of homologous recombination: Implications for breast cancer development and treatment
Show more 3

Poster Presentations - Proffered Abstracts

  • Abstract LB-236: Risk of tMDS/AML after chemotherapy for first primary lymphoid malignancy, 2000-2013
  • Abstract LB-001: Impact of direct physician engagement with racial/ethnic minorities for oncology clinical trial access and accrual model
  • Abstract LB-107: EV-TRACK: transparent reporting and centralizing knowledge of extracellular vesicles to support the validation of extracellular vesicle biomarkers in cancer research
Show more 3

Poster Presentations - Therapeutic Targeting of Cancer Stem Cells

  • Abstract 5362: Multidrug-resistance (MDR-1) gene expression in immature glioma cells
  • Abstract 3483: Inhibition of Monocarboxylate Transporter 4 (MCT4) targets stem-like cells in glioblastoma
Show more 3
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement