Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Invited Speaker Abstracts

Abstract BS01-2: Moving breast cancer stem cell therapies to the clinic

MS Wicha
MS Wicha
University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/0008-5472.SABCS13-BS01-2 Published December 2013
  • Article
  • Info & Metrics
Loading
Abstracts: Thirty-Sixth Annual CTRC-AACR San Antonio Breast Cancer Symposium - Dec 10-14, 2013; San Antonio, TX

Abstract

The realization that many cancers, including breast cancer, are driven by cells which display stem cell properties has significant clinical implications. Furthermore, the demonstrated role of these cells in mediating tumor metastasis and treatment resistance suggests the need to develop strategies to specifically target CSC populations. Cancer stem cell self-renewal and survival pathways represent potential therapeutic targets. These self-renewal pathways are regulated by an interacting network of cell intrinsic pathways, as well as extrinsic factors from the tumor microenvironment. These mircroenvironmental factors include cytokines such as IL-6, IL-8 and TGFb. CSCs maintain the plasticity to transition between epithelial-like MET and mesenchymal-like EMT states, a process regulated by the tumor microenvironment through microRNA circuits. We have demonstrated that previously identified cancer stem cell markers are cancer stem cell state specific. CD44+/CD24- CSCs represent mesenchymal-like stem cells capable of tissue invasion which are largely quiescent. In contrast, Aldehyde dehydrogenase expression identifies a more epithelial-like cancer stem cell state associated with self-renewal. Reversible EMT/MET transitions play a crucial role in mediating tumor metastasis.

Preclinical breast cancer models predict that the greatest efficacy of CSC targeting therapeutics will occur when they are used in the adjuvant setting, a concept supported by preclinical models and clinical trials. Tumor regression may reflect effects on bulk cell populations explaining the lack of correlation between tumor shrinkage and patient survival. In contrast, recurrence following adjuvant therapy may be mediated by CSCs, which possesses sufficient self-renewal to form clinically significant metastasies. The important role of HER2 signaling in regulating breast cancer stem cell self-renewal may account for the remarkable clinical efficacy of targeting HER2 in the adjuvant setting. Furthermore, the clinical benefit of such therapies in classically defined HER2-negative breast cancers may be due to selective expression of HER2 in CSCs in the absence of HER2 gene amplification. The clinical benefit of adjuvant trastuzumab in women whose breast cancers are currently classified as HER2-negative is currently being assessed in the randomized national clinical trial B47. These studies may demonstrate the need for reevaluating currently used clinical endpoints and clinical trial designs. Promising new technologies including the isolation and molecular characterization of circulating cancer stem cells may provide the opportunity for real time assessment of the efficacy of CSC targeting agents. A number of agents regulating BCSCs have entered early phase clinical trials which will determine whether effective targeting of CSCs improves patient outcome.

Citation Information: Cancer Res 2013;73(24 Suppl): Abstract nr BS01-2.

Previous
Back to top
Cancer Research: 73 (24 Supplement)
December 2013
Volume 73, Issue 24 Supplement
  • Table of Contents
  • Index by Author

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract BS01-2: Moving breast cancer stem cell therapies to the clinic
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Abstract BS01-2: Moving breast cancer stem cell therapies to the clinic
MS Wicha
Cancer Res December 15 2013 (73) (24 Supplement) BS01-2; DOI: 10.1158/0008-5472.SABCS13-BS01-2

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract BS01-2: Moving breast cancer stem cell therapies to the clinic
MS Wicha
Cancer Res December 15 2013 (73) (24 Supplement) BS01-2; DOI: 10.1158/0008-5472.SABCS13-BS01-2
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Invited Speaker Abstracts

  • Abstract IS-2: The challenge of definition and adoption; perspective from the Middle East
  • Abstract OI-1: Tackling Breast Cancer Diversity
  • Abstract IS-1: Health System Responses to Women's Cancers in the Americas: Closing Divides to Achieve Universal Health Coverage
Show more 3

Basic Science Forum: Therapeutic Implications of Cancer Stem Cells

  • Abstract BS01-1: Genetic and non-genetic mechanisms contribute to longterm clonal growth dynamics and therapy resistance
Show more 3
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement