Skip to main content
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

  • Register
  • Log in
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
  • AACR Publications
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in

Search

  • Advanced search
Cancer Research
Cancer Research

Advanced Search

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
    • Reviewing
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Focus on Computer Resources
    • 75th Anniversary
    • Meeting Abstracts
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • OnlineFirst
    • Editors' Picks
    • Citations
    • Author/Keyword
  • News
    • Cancer Discovery News
Experimental and Molecular Therapeutics

Abstract 89: Targeting Rho/MRTF regulated gene transcription in drug-resistant melanoma

Sean A. Misek, Scott D. Larsen, Kathleen A. Gallo and Richard R. Neubig
Sean A. Misek
Michigan State Univ., East Lansing, MI;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Scott D. Larsen
University of Michigan, Ann Arbor, MI.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathleen A. Gallo
Michigan State Univ., East Lansing, MI;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Richard R. Neubig
Michigan State Univ., East Lansing, MI;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/1538-7445.AM2017-89 Published July 2017
  • Article
  • Info & Metrics
Loading
Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC

Abstract

Much of the recent focus of melanoma targeted therapy has been on the ERK pathway, which is aberrantly activated in approximately 90% of melanoma tumors (over half of which express BRAFV600E). Current targeted therapies such as vemurafenib (BRAFV600E inhibitor), or a combination therapy using dabrafenib (BRAFV600E inhibitor) and low dose trametinib (MEK inhibitor) shows profound initial effects in a majority of BRAFV600E expressing tumors. However, these responses are often short-lived and resistances typically develops within months. Resistance to these targeted therapies can arise from multiple mechanisms, including activation of pro-survival signaling pathways parallel to the ERK pathway. The goal of this work is to identify pharmacologically targetable resistance mechanisms so that effective combination therapies can be developed.

Despite the clear role of the RhoA subfamily of Rho GTPases (RhoA/B/C) as melanoma oncogenes, their role in drug resistance is not well understood. It is challenging to develop small molecule inhibitors which directly target the activity of small Rho GTPases, so an alternative approach is to inhibit downstream pathways. Through modulation of the actin cytoskeleton Rho can induce gene transcription through multiple transcriptional co-activators including Myocardin-Related Transcription Factor (MRTF) and Yes-Associated Protein 1 (YAP).

My bioinformatics analysis demonstrates that MRTF-A gene expression is correlated with poor overall survival in a large cohort of cutaneous melanoma patients. Furthermore, expression of a set of 216 MRTF target genes is enriched in dabrafenib/trametinib resistant cutaneous melanoma tumors compared to matched pre-treatment tumors, suggesting that MRTF activation may be involved in drug resistance. Based upon these results I hypothesized that small Rho GTPases may promote resistance to MAPK pathway targeted therapies through activation of MRTF/YAP.

To test this hypothesis, I generated vemurafenib resistant melanoma cells through chronic exposure to vemurafenib. This vemurafenib-resistant cell population is enriched for actin stress fiber positive cells, and these cells have increased Myosin Light Chain 2 (MLC2) phosphorylation, suggesting that there is increased Rho activation. Furthermore, these drug resistant cells are more sensitive to pharmacological inhibition of MRTF activity. These preliminary data suggest that vemurafenib resistant melanoma cells may be re-wired to depend on the Rho-induced gene transcription for their survival, and that a combination therapy simultaneously targeting these two pathways may be an effective treatment strategy for BRAF inhibitor-resistant melanomas.

Citation Format: Sean A. Misek, Scott D. Larsen, Kathleen A. Gallo, Richard R. Neubig. Targeting Rho/MRTF regulated gene transcription in drug-resistant melanoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 89. doi:10.1158/1538-7445.AM2017-89

  • ©2017 American Association for Cancer Research.
Previous
Back to top
Cancer Research: 77 (13 Supplement)
July 2017
Volume 77, Issue 13 Supplement
  • Table of Contents
  • Index by Author

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract 89: Targeting Rho/MRTF regulated gene transcription in drug-resistant melanoma
(Your Name) has forwarded a page to you from Cancer Research
(Your Name) thought you would be interested in this article in Cancer Research.
Citation Tools
Abstract 89: Targeting Rho/MRTF regulated gene transcription in drug-resistant melanoma
Sean A. Misek, Scott D. Larsen, Kathleen A. Gallo and Richard R. Neubig
Cancer Res July 1 2017 (77) (13 Supplement) 89; DOI: 10.1158/1538-7445.AM2017-89

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract 89: Targeting Rho/MRTF regulated gene transcription in drug-resistant melanoma
Sean A. Misek, Scott D. Larsen, Kathleen A. Gallo and Richard R. Neubig
Cancer Res July 1 2017 (77) (13 Supplement) 89; DOI: 10.1158/1538-7445.AM2017-89
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Experimental and Molecular Therapeutics

  • Abstract SY14-03: Anaplastic lymphoma kinase (ALK): Normal biology and role in hematopoietic malignancies
  • Abstract SY18-01: Targeting the p53-MDM2 interaction for cancer therapy
  • Abstract SSY01-04: Discovery and validation of genome-wide genetic signatures of chemotherapy susceptibility: A translational model
Show more 3

Poster Presentations - Proffered Abstracts

  • Abstract LB-236: Risk of tMDS/AML after chemotherapy for first primary lymphoid malignancy, 2000-2013
  • Abstract LB-001: Impact of direct physician engagement with racial/ethnic minorities for oncology clinical trial access and accrual model
  • Abstract LB-107: EV-TRACK: transparent reporting and centralizing knowledge of extracellular vesicles to support the validation of extracellular vesicle biomarkers in cancer research
Show more 3

Poster Presentations - Gene Expression of Drug Resistance

  • Abstract 81: E2F4/p107 complex regulates chemotherapy resistance in human colorectal cancer stem cells
  • Abstract 93: Transcriptional control of glucocorticoid responses in leukemia
  • Abstract 95: Targeting BRD4 overcomes cetuximab resistance in HNSCC
Show more 3
  • Home
  • Alerts
  • Feedback
Facebook  Twitter  LinkedIn  YouTube  RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Meeting Abstracts

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians
  • Reviewers

About Cancer Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2018 by the American Association for Cancer Research.

Cancer Research Online ISSN: 1538-7445
Cancer Research Print ISSN: 0008-5472
Journal of Cancer Research ISSN: 0099-7013
American Journal of Cancer ISSN: 0099-7374

Advertisement