The Production of Tumors in Rats by the Implantation of Pure Polyethylene*

EDGAR A. BERING, JR., ROBERT L. McLaurin, JOHN B. LLOYD, AND FRANC. D. INGRAHAM

(The Neurosurgical Research Laboratory, Children's Medical Center, Boston, Mass.)

This report confirms the production of tumors in rats by pure polyethylene implanted in the abdominal wall, and, in addition, the production of tumors by the implantation of polyethylene over the skull is described.

Oppenheimer et al. (1—3) have reported the production of malignant tumors in rats by the implantation of various plastics in the abdominal wall. The frequency of tumor production varied from 4 per cent to 45 per cent, depending upon the plastic used. Among these plastics were two types of polyethylene: one of a commercial grade and one considered to be pure. They found that the pure polyethylene without a plasticizer induced tumors in 18 per cent of the rats. These tumors were chiefly fibrosarcomas and could be transferred through several generations in rats.

Since polyethylene is used for many surgical procedures and is often left in the tissues, confirmation of these observations is important even though the relationship between the production of tumors in rodents and the production of tumors in man is not known.

MATERIALS AND METHODS

Pure polyethylene film1 of the kind used in clinical procedures was employed as the test substance. This was washed with detergent, rinsed with water, heat-sealed in polyethylene sacs (same material), and sterilized with high voltage cathode rays.

Two strains of rats were used, namely, Wistar and Hisaw (originally from Wistar stock). There were equal numbers of each sex. Fifty rats of each strain had polyethylene aseptically implanted subcutaneously in the abdominal wall and subgaleally over cranial defects. The pieces of polyethylene were square, about 1.5—2 cm. on each side. Fifty additional rats (Hisaw) were used as a control group. These animals were subjected to an identical surgical procedure, but no polyethylene was imbedded. All these rats were then allowed to live until they developed tumors or died. All were kept in the same room and fed the same diet.

RESULTS

Of the original 150 rats, 59 were lost in their cages by cannibalism, and another six died soon after implantation of the plastic and would not be expected to have developed a tumor. Thus, there were 85 rats that survived long enough to develop tumors and were observed until they died or were sacrificed; 28 of these were controls, and 57 had polyethylene implants. The survival times of the 28 control rats were: 8—12 months, 22; 12—18 months, 14; 18—24 months, 6. The survival times of the 63 rats with polyethylene implants were: 8—12 months, 61; 12—18 months, 49; 18—24 months, 30. All surviving animals were sacrificed 24 months after the implantations.

Sixteen tumors developed in the 63 rats with polyethylene implants. Eight were associated with polyethylene implants and had the appearance of fibrosarcoma. Seven were breast tumors of various types, in females, unassociated with polyethylene; and one was a hepatoma, in a male, also not associated with polyethylene.

The eight tumors associated with the polyethylene implants were equally distributed between the males and females. Six of these tumors were associated with the abdominal polyethylene implants and two with the cranial polyethylene implants. The first tumor associated with polyethylene became apparent a year and 2 months (434 days) after implantation of the polyethylene over a cranial defect. The second tumor, associated with an abdominal polyethylene implantation, appeared after a year and 4 months (479 days).
remaining tumors were first observed at 638, 672, 691, 738, 740, and 738 days.

In the control group five tumors developed. All were in females: four were breast tumors and one a carcinoma of the bowel. None of these was related to the operative sites.

In summary (Table 1), there was a 12.7 per cent incidence of tumors associated with the polyethylene implants, and none in the controls. There was a 21 per cent incidence of breast tumors in the female rats with polyethylene implants and a 29 per cent incidence of breast tumors in the females of the control group.

Although there is some difference in the incidence of tumors between the two strains, the numbers are small and probably do not indicate a true difference. This is supported by the fact that the Oppenheimer group used the Wistar strain in their experiments.

Thus, it is probably the polyethylene alone which causes the tumors.

The latent period observed in these experiments was slightly longer than that observed by Oppenheimer et al., but the difference is not significant in terms of the data available. This long latent period, which allows the rat to survive until old age, raises the possibility that there may be some factor associated with aging which is in some way responsible for the tumor formation. If there is an aging factor, it could be a species effect. Further experimentation will be required to settle this point.

SUMMARY

1. A 12.7 per cent incidence of fibrosarcoma was found in rats with polyethylene implants. No tumors were found in a control group which received similar surgical treatment but in which no polyethylene implant was made.

2. Sex was not a factor in the production of tumors by polyethylene.

3. The tumors occurred both with implants in the abdominal wall and over the skull.

4. The polyethylene implants did not affect the incidence of breast tumors in females.

REFERENCES

TABLE 1

<table>
<thead>
<tr>
<th>STRAIN</th>
<th>SEX</th>
<th>No. rats</th>
<th>Abdomen</th>
<th>Skull</th>
<th>Breast</th>
<th>Other</th>
<th>Abdomen</th>
<th>Skull</th>
<th>Breast</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hisaw</td>
<td>F</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Hisaw</td>
<td>M</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>4</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Wistar</td>
<td>F</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Wistar</td>
<td>M</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>65</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>28</td>
<td>4</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Frequency:</td>
<td>12.7 per cent</td>
<td>21 per cent</td>
<td>(females only)</td>
<td>29 per cent</td>
<td>(females only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Production of Tumors in Rats by the Implantation of Pure Polyethylene

Edgar A. Bering, Jr., Robert L. McLaurin, John B. Lloyd, et al.

Cancer Res 1955;15:300-301.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/15/5/300

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.