The Effect of Some Cystine Derivatives on Catalase Activity

H. HIRAI† AND H. F. DEUTSCH

(Department of Physiological Chemistry, University of Wisconsin, Madison, Wis.)

The decreased liver catalase activity of animals bearing tumors is well known (17, 18). However, various explanations of this effect have been offered. One of these, as exemplified by the studies of Nakahara et al. (11, 12, 23–26), postulates that tumors release a factor designated as toxohormone, which exerts its effect on liver catalase. A similar view is also taken by other investigators (15, 16, 18).

An alternate suggestion is that the discussed inhibition is due to some aberrancy in cystine metabolism by tumor tissues. These show a marked increase in alkali-labile sulfur (18), and the level of cystine has been found by Schweigert et al. (29) to be present in markedly enhanced concentration in liver hepatomas as compared with adjacent normal tissue. The intraperitoneal administration of cystine also lowers liver catalase activity in vivo (30), but no increased blood level of this amino acid was noted in tumor-bearing rats.

Hargreaves and Deutsch (11) have reported that tumor "Koehsafs" are very active in inhibiting catalase in vitro as compared with those of other tissues. This finding has been criticized by Endo et al. (9), who reported that other tissue "Koehsafs" likewise inhibited catalase strongly. They suggest that this activity is due to sulfhydryl compounds. However, it was found that, whereas iodoacetate would reverse the in vitro inhibitory effect of cysteine on catalase, it was ineffective in reducing the activity of tumor "Koehsafs" (30).

The indicated aberrancy in cystine metabolism by tumors and the known inhibitory action of cysteine on catalase activity prompted an investigation on the effect of various known cystine metabolites on this enzyme. Such compounds might undergo marked elevation in liver tissue as the result of an increased rate of metabolism of this amino acid.

* This work was supported in part by a grant from the American Cancer Society (Univ. of Wis. Institutional Grant) and the Wisconsin Alumni Research Foundation.

† Receipt of a Fulbright Travel Grant is gratefully acknowledged.

Received for publication October 2, 1957.

MATERIALS AND METHODS

Beef liver catalase, crystallized six times and prepared by acetone fractionation (8), was utilized as the source of enzyme in in vitro experiments. It was found to be essentially pure, as evaluated by electrophoretic and ultracentrifugal assay. Its hydrogen peroxide-destroying activity, as evaluated by the method of Bonnichsen, Chance, and Theorell (4), varied between 2.2 and 2.7 X 10^7 liters/mole/sec. As in a previous investigation (11), the amount of catalase giving a first-order reaction constant of 1 X 10^-3 was designated as 1 unit. The dissociation constants of various catalase-inhibitor complexes were calculated from general equilibrium equations.

The cystine derivatives used in the various in vitro and in vivo experiments were cysteine, cystine disulfoxide (18), cysteine sulfinic acid (21), 2-amino-ethane-sulfinic acid (2, 14, 27, 33), cysteic acid, taurine, and the decomposition products resulting from the action of sodium sulfite on cystine disulfide.

The rapid autoxidation of cysteine and sulfinic acids makes difficult the preparation of standard solutions for experimental work. Such type compounds were always prepared in 0.01 M sodium sulfite, which prevents oxidation of the above. This level of sodium sulfite showed no appreciable in vitro or in vivo effects on catalase in control experiments.

Cysteine concentrations were determined by the method of Folin and Marenzi (10). Ascending paper chromatography experiments on Whatman No. 1 paper with the use of a saturated phenol:water (100:40 volumes) solvent was employed to determine the relative purity of compounds such as cysteine, cystine, cystine disulfide, and the sulfinic acids. The chromatograms were developed with ninhydrin.

RESULTS

In vitro studies.—Various levels of inhibitors and catalase in 0.1 M, pH 8.8, potassium phosphate buffer were incubated at 0–2° C. for 60–90 minutes. Sodium sulfite was present at a level of 0.01 M, as previously mentioned. The period of incubation employed was found sufficient to give maximum inhibition in all cases. These mixtures were then assayed for catalase activity, which was interpreted as free enzyme by reference to a control catalase activity-concentration curve of the type presented in Chart 1.

The results of the experiments with cysteine are shown in Chart 2. The value of the dissociation constant of cysteine-catalase was nearly 4 X 10^-5.

† The authors wish to acknowledge with thanks the helpful advice of Dr. Kiyoo Satoh during the preparation of these compounds.
This may be compared with the values for the analogous complexes of catalase with cyanide, 2-amino-ethane and cysteine sulfinic acids, and the products of the decomposition of cystine disulfoxide by sodium sulfite (see Table 1). It is apparent that cysteine was the strongest inhibitor of the cystine derivatives studied, although it was weaker than cyanide. Our value for the dissociation constant of the cyanide-catalase complex was somewhat lower than that of other investigators (6, 7, 20, 22, 32, 34). The value of \(4 \times 10^{-4} \) for the dissociation of the cysteine-catalase complex is much lower than the \(1 \times 10^{-3} \) for sulfhydryl groups reported by Stern (32). However, as previously mentioned, the failure to take into consideration the rapid loss of cysteine by oxidation may account for the higher values of the older literature.

The products resulting from the decomposition of cystine disulfoxide by sodium sulfite were distinctly stronger inhibitors than the expected sulfinic acid derivative. In analogy with the postulated decomposition of cystine disulfoxide and cysteine by cyanide (21) and of cysteine by sodium sulfite (5), the following reactions might be proposed for cystine disulfoxide with sodium sulfite.

\[
\begin{align*}
R-S-S+Na_2SO_3 & \rightarrow R-S-O-Na + R-S-S-\dfrac{O}{Na} \\
R-S-O-Na + R-S-S-\dfrac{O}{Na} & \rightarrow R-S-O-Na + R-S-S-O-\dfrac{Na}{Na}
\end{align*}
\]

The paper chromatograms of the cystine disulfoxide-sodium sulfite reaction mixtures gave two ninhydrin-reactive spots. One of these had an \(R_\alpha \) close to that of the sodium salt of cysteine sulfinic acid (\(R_\alpha 0.2 \)), but the second was not identifiable in terms of the other cystine derivatives. The possibility of its being cysteine sulfinate is indicated by the above postulated equations. This very labile compound should be a strong inhibitor of catalase, and, if formed, might be maintained in part by the presence of sodium sulfite. It will be pointed out later that other reactions of the cystine disulfoxide-sodium sulfite reaction products indicate that the catalase inhibition is not due to the sulfinate.

Mercaptoethanol and mercaptoacetic acid inhibit catalase to the same degree as cysteine. Neither cysteic acid nor taurine shows any activity, in agreement with previous findings (30).

Spectrophotometric studies.—A marked change in the absorption spectrum of catalase was seen in...
following its reaction with cysteine. Of particular interest was the marked decrease in absorption in the region of the Soret band. The general characteristics of the curve are similar to those of catalase-tumor "Kochsaft" mixtures (19). If one assumes that the minimum value of the 405 m\(\mu\) optical density at high cysteine-catalase ratios is due entirely to this complex, the concentration of free enzyme at different cysteine:catalase ratios may be calculated from the following equations:

\[
\begin{align*}
(1) & \quad F + E = F_{\text{read}}, \\
(2) & \quad T = F - B \\
(3) & \quad F = \frac{E - E_0}{E - E_0 - T}
\end{align*}
\]

where \(T\) = moles of total enzyme, \(F\) = moles of free enzyme, \(B\) = moles of bound enzyme, \(E_0\) = molar extinction of the free enzyme at 405 m\(\mu\), and \(E_{\text{read}}\) = molar extinction of the bound enzyme at 405 m\(\mu\), and \(E_{\text{read}}\) = optical density of mixture of enzyme and inhibitor.

Data from experiments on the determination of the dissociation constant of the catalase-cysteine complex by the spectrophotometric and activity methods are shown in Table 2. The results are in good agreement.

Cysteine sulfinic acid, 2-amino-ethane sulfinic acid, and the reaction products of cystine disulfoxide and sodium sulfite did not affect the absorption spectrum of catalase in the 350-520 m\(\mu\) range.

The effect of formol and iodoacetate on the inhibitory effect of various cystine derivatives.—Formol reacts with cysteine forming a thiazolidine derivative and thus effectively neutralizes the activity of the sulfhydryl group. Iodoacetic acid exerts the same effect through its well known alkylating reaction.

Solutions of formol and iodoacetate were reacted with the various cysteine derivatives in M/15 potassium phosphate buffer at pH 6.8. Sodium sulfite was included in the reaction mixture in all cases, since it was a component of the cystine disulfoxide decomposition reaction. Appropriate control experiments with the sodium sulfite were always performed. Under the conditions used, the reactions of formol and iodoacetate with cysteine had gone to completion at room temperature in 25 and 75 minutes, respectively. These reaction mixtures were then incubated with catalase for 1–2 hours at 0–2° C. following which interval the usual activity determination was performed. Data typical of experiments with formol and iodoacetate are presented in Tables 3 and 4, respectively. It can be seen that formol reversed the catalase-inhibiting action of all the compounds tested, as well as that of the tumor extracts. In control experiments it was seen that formol enhanced catalase activity in some cases.

In keeping with previous studies, iodoacetate was found to inhibit catalase slightly, to partially reverse the catalase-inhibiting action of cysteine, and to show little effect on the activity of the tumor extract (30). A further finding was the ability of iodoacetate to reverse the inhibitory action of the sodium sulfite decomposition products of cystine disulfoxide. Interestingly, iodoacetate enhanced the inhibitory action of cysteine sulfinic acid.

In vivo effects of various cystine derivatives on liver catalase activity.—Various compounds in M/15, pH 7.2, potassium phosphate buffer were administered by intraperitoneal injection to 150–190-gm. male rats. The low solubility of cystine and cystine disulfoxide necessitated their administration in the form of fine suspensions. The rats were killed by decapitation after stated intervals, the livers perfused with isotonic NaCl and homogenized in 3 volumes of distilled water. Catalase
activity and dry weight determinations were then carried out on the homogenates. The activity measurements were made within several hours, although no changes were noted in homogenates that were allowed to stand for 24 hours at room temperature. Freezing and thawing of the homogenates resulted in enhanced catalase activity, but these procedures were not employed, since variable results were obtained. A summary of the average period. Cysteine sulfinic acid would appear to be a stronger in vivo inhibitor than the 2-amino-ethane derivative, because it is converted to the latter inhibitory compound on its metabolic pathway to taurine.

DISCUSSION

The work reported is directed toward the general problem of determining whether the known effects of cystine and some of its derivatives is shown in Table 5. The detailed data are plotted in Chart 3 to show the individual variations encountered.

A considerable variation in the liver catalase activity within a given group is indicated. With the exception of 2-amino-ethane sulfinic acid, all the compounds tested except the sulfonic acid derivatives showed greater liver catalase-depressing activity than cystine. The former compound is converted to inactive taurine by rat liver (3) and shows a definite inhibitory effect only at the 2-hour period. Cysteine sulfinic acid would appear to be a stronger in vivo inhibitor than the 2-amino-ethane derivative, because it is converted to the latter inhibitory compound on its metabolic pathway to taurine.

TABLE 3

THE EFFECT OF FORMOL ON THE CATALASE-INHIBITING ACTION OF VARIOUS CYSTINE DERIVATIVES

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Molar Conc.</th>
<th>Control</th>
<th>Formol*</th>
<th>Inhibitor</th>
<th>Formol*+ inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cysteine</td>
<td>1.25×10^-4</td>
<td>1.07</td>
<td>0.00</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0×10^-4</td>
<td>0.80</td>
<td>0.96</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Cysteine sulfinic acid</td>
<td>1.0×10^-4</td>
<td>0.80</td>
<td>0.96</td>
<td>0.41</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>1.25×10^-4</td>
<td>0.96</td>
<td>0.97</td>
<td>0.74</td>
<td>0.99</td>
</tr>
<tr>
<td>Cystine disulfoxide-Na2SO3</td>
<td>5.0×10^-3</td>
<td>0.96</td>
<td>0.97</td>
<td>0.68</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Tumor “Kochsaft” 1.18 1.30 0.15 1.21

* Final concentration of formol was 1×10^-4 M.

TABLE 4

THE EFFECT OF IODOACETATE ON THE CATALASE-INHIBITING ACTION OF VARIOUS CYSTINE DERIVATIVES

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>Molar Conc.</th>
<th>Control</th>
<th>Iodoacetate*</th>
<th>Inhibitor</th>
<th>Iodoacetate+ inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cysteine</td>
<td>5×10^-4</td>
<td>0.88</td>
<td>0.71</td>
<td>0.07</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>1×10^-2</td>
<td>0.80</td>
<td>0.62</td>
<td>0</td>
<td>0.47</td>
</tr>
<tr>
<td>Cysteine sulfinic acid†</td>
<td>1×10^-4</td>
<td>0.82</td>
<td>0.68</td>
<td>0.07</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>5×10^-4</td>
<td>0.80</td>
<td>0.62</td>
<td>0.41</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>5×10^-4</td>
<td>0.76</td>
<td>0.58</td>
<td>0.41</td>
<td>0</td>
</tr>
<tr>
<td>Cystine disulfoxide-Na2SO3</td>
<td>2.5×10^-3</td>
<td>0.79</td>
<td>0.58</td>
<td>0.48</td>
<td>0.74</td>
</tr>
<tr>
<td>products</td>
<td>2.0×10^-3</td>
<td>0.76</td>
<td>0.58</td>
<td>0.07</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Tumor “Kochsaft” 1.18 1.08 0.15 0.25

* The concentration of iodoacetate was 1×10^-3 M.
† The concentrations of this inhibitor are approximate, since the preparations contained considerable cysteic acid at the time of these experiments.
hibitory action of the latter does not appear to be
due to the sulfinic acid, since iodoacetate was ef-
fective in reversing its effect while augmenting the
effect of the cysteine sulfinic acid. The possibility
of cysteine sulfinic acid's being responsible was
previously mentioned. In any event, a series of
cystine degradation products has been shown to
inhibit catalase both in vitro and in vivo. Other
cystine metabolites, such as mercaptoptpyruvic
acid, 2-amino-2-carboxy-ethanethiosulfonic acid,
and alaninethiosulfonic acid (31), have not been
tested but are also probable inhibitors of this en-
zeyme. An aberrancy in sulfur amino acid metabo-

| TABLE 5 |
| THE EFFECT OF CYSTINE AND SOME OF ITS DERIVA-
| TIVES ON THE ACTIVITY OF RAT LIVER CATALASE |

<table>
<thead>
<tr>
<th>Inhibitor*</th>
<th>Amount injected† (mg/100 gm)</th>
<th>Units catalase/gm liver</th>
<th>Per cent of normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>234</td>
<td>100</td>
</tr>
<tr>
<td>Cystine</td>
<td>8.5</td>
<td>296</td>
<td>78</td>
</tr>
<tr>
<td>Cysteine</td>
<td>8.5</td>
<td>167</td>
<td>67</td>
</tr>
<tr>
<td>Cysteine (2 hr.)</td>
<td>8.5</td>
<td>230</td>
<td>93</td>
</tr>
<tr>
<td>Cystine disulfide</td>
<td>9.5</td>
<td>248</td>
<td>100</td>
</tr>
<tr>
<td>Cystine disulfide-Na2SO3 reaction products</td>
<td>9.5</td>
<td>230</td>
<td>64</td>
</tr>
<tr>
<td>Cysteine sulfinic acid</td>
<td>12</td>
<td>194</td>
<td>77</td>
</tr>
<tr>
<td>2-amino-ethane sulfinic acid</td>
<td>8.5</td>
<td>530</td>
<td>96</td>
</tr>
<tr>
<td>2-amino-ethane sulfinic acid (2 hr.)</td>
<td>8.5</td>
<td>292</td>
<td>88</td>
</tr>
<tr>
<td>Cysteic acid</td>
<td>12</td>
<td>550</td>
<td>105</td>
</tr>
<tr>
<td>Tumor</td>
<td>Flexner-Jobling)</td>
<td>156</td>
<td>40</td>
</tr>
</tbody>
</table>

* The rats were sacrificed 24 hr. after administration of the various compounds except where otherwise indicated.
† The amounts of inhibitor are equivalent to 0.7 millimoles/kg body wt.

The ability of “Kochschafts” of other tissues to inhibit catalase (9, 30) indicates that tumor tissue is not unique in this respect, although in our expe-

with catalase, causes spectral changes similar to
those of cysteine (19). The sulfinic acids and
cystine disulfioxide-sodium sulfite reaction prod-
ucts produced no such changes. Spectrophotom-
eteric studies on various liver catalase prepara-
tions from rats bearing hepatomas reveal that marked changes in absorption spectrum are in-
duced by the presence of the tumor (28).

The ability of “Kochschafts” of other tissues to
inhibit catalase (9, 30) indicates that tumor tissue is not unique in this respect, although in our expe-

rience the tumor material showed much higher ac-
tivity than liver and spleen. Our data do not rule
out or suggest that sulfinic acids may play a part
in the role of the discussed “Kochschaft” effect.

SUMMARY

Cysteine, cysteine sulfinic acid, 2-amino-ethane
sulfinic acid, and sodium sulfite-cystine disulfoxide
reaction products are all good inhibitors of cata-
lase in vitro. They and cystine disulfoxide also
lower rat liver catalase activity in vivo, with 2-
amino-ethane sulfinic acid showing only a weak
activity. Only cysteine, of the above compounds, affects the absorption spectrum of catalase. Iodoacetate reverses the catalase-inhibiting action of cysteine, and of cystine disulfide-sodium sulfite reaction products, but not of cysteine sulfenic acid and of tumor "Kochsafs." Formol reverses the catalase-inhibiting action of all the above. Changes in the absorption spectrum of catalase are effected only by cysteine and "Kochsafa" material.

REFERENCES

10. Folin, O., and Marenzi, A. D. A Kinetic Study of the Reaction Products, but not of Cysteine Sulfinic Acid and of Fetal "Kochsafs." Formol reverses the catalase-inhibiting action of all the above. Changes in the absorption spectrum of catalase are effected only by cysteine and "Kochsafa."
The Effect of Some Cystine Derivatives on Catalase Activity

H. Hirai and H. F. Deutsch

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/18/3/283

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.