A Polypeptidic Substance Found in Human Leukemic Urine Which Promotes Nonenzymic Acid Solubility of Nucleic Acids*

Marvin Tunis, Herbert Weinfeld, and Avery A. Sandberg

(Medical Department, Roswell Park Memorial Institute, Buffalo, N.Y.)

The existence of differences in nucleic acid metabolism among the various human leukemic states is illustrated by the patterns of incorporation of labeled precursors into the nucleic acids of the leukocytes (9, 10), the results of nucleic acid turnover studies (3), and the characteristic plasma and urinary uric acid levels (6, 8).

A further reflection of these differences in human leukemia might be found in the amounts of deoxyribonucleases (DNase I and DNase II) in the urine. These enzymes have been found (4) in precipitates produced by saturation of human urine with (NH₄)₂SO₄, and it has been demonstrated (5) that in the rat an altered physiological state (produced by x-radiation) increases the DNase activity of the urine.

In the method of assay of DNase usually employed (1), the acid-soluble products formed from deoxyribonucleic acid (DNA) when it is incubated with urine are determined. In the present report the use of this assay procedure revealed that DNA was rendered acid-soluble by human leukemic urine under conditions necessary for either the action of DNase I or of DNase II. On close examination it was found that this effect was in part nonenzymic. The nonenzymic action on DNA could be attributed to the presence in the leukemic urine of a heat-stable, nondialyzable substance which is inactivated by incubation with proteolytic enzymes.

MATERIALS AND METHODS

Urine collection.—Twenty-four-hour urine specimens from normal subjects and from patients with leukemia and other malignancies were collected under toluene, cooled to 4°C., and filtered. A sample of each urine was dialyzed (Visking casing) against cold running tap water in a 4°C. cold room overnight, followed by distilled water until the dialysate was free of chloride. The samples were stored in the frozen state after dialysis.

Assay for DNase I and DNase II in urine.—The methods of Allfrey and Mirsky (1), as modified by Kowlessar et al. (5), with the use of calf thymus DNA (Worthington Laboratories, Freehold, New Jersey), were used. To the standard substrate solutions, 0.5 ml. of water or urine was added, and the mixtures were incubated for varying lengths of time at 37°C. Trichloroacetic acid (TCA) was added to a concentration of 9 per cent. After centrifugation at 2°C. and 800 × g for 20 minutes, the diphenylamine reaction (2) was applied to the supernatant fluids. The amount of DNA solubilized was determined by means of a standard curve; corrections were made for urine and substrate blanks.

Turbidimetry.—One ml. of 38 per cent TCA was added to 4 ml. of an aqueous solution of herring-sperm DNA (California Foundation for Biochemical Research). The optical density of the resulting suspension, which reached a maximum value in a few minutes, was measured in the Klett-Summerson photoelectric colorimeter equipped with filter 66 or in the Beckman Spectrophotometer at 660 mμ. Maximal optical densities were directly proportional to the amount of DNA up to 4 mg. The prevention of acid precipitation of DNA by dialyzed urine or solutions of solids prepared from such urine was studied, with appropriate water controls.

Fractional precipitation of urine with ethanol.—Approximately 1500 ml. of dialyzed urine was concentrated, by boiling, to 1 liter. Further concentration was affected by evaporation in shallow print.
pans on a steam bath with a current of air passing over the surface. The temperature was maintained between 50 and 60° C. When the volume was about 100 ml., the material was centrifuged, the sediment washed with a little water, the wash solution combined with the supernatant fluid, and the sediment discarded. Ethanol was added to the solution to a concentration of 30–40 per cent. After being cooled for 1 hour at —10° C., the precipitate which appeared from leukemic urine concentrates exhibited slight activity in the turbidimetric test system and was discarded. The ethanol concentration was brought to 65 per cent, and after being cooled for 1 hour at —10° C., the precipitate was collected, washed successively with 80 per cent ethanol, absolute ethanol, ethanol-ether (1:1), ether, and air-dried. Solids prepared in this fashion from urines of five leukemic patients (two acute myeloblastic, one acute lymphoblastic, one acute monoblastic, one chronic lymphocytic) were active in the turbidimetric test system. Supernatant fluids from the 65 per cent ethanol precipitation step yielded inactive material at higher concentrations of ethanol. The urine from four normal subjects yielded inactive solids between ethanol concentrations of 35 and 65 per cent. The amount of protein in these preparations was determined by a colorimetric biuret method and by the method of Lowry et al. (7), with crystalline ovalbumin used as the standard.

RESULTS AND DISCUSSION

The effects of incubating DNA with dialyzed normal or leukemic urine are illustrated by the data recorded in Table 1. Under conditions for the action of DNase I, normal urine did not produce acid-soluble products from DNA in 5 minutes but degraded approximately 36 per cent of the DNA in 120 minutes. DNase II activity was not detected. Heating normal urine (1 hour, boiling water bath) abolished DNase I activity. When leukemic urine was tested under the same conditions, 40–60 per cent of the DNA was nonprecipitable by TCA after 5 minutes in both the DNase I and II assays. Further incubation yielded additional acid-soluble products of DNA under DNase I conditions, but DNase II activity was very low or absent. Prior heating of leukemic urine did not abolish the effect of short-term incubation but prevented further degradation of DNA in the DNase I assay. A further study of the influence of time of incubation of DNA with leukemic urine in the DNase II test system revealed that as much DNA was rendered acid-soluble in 1 minute as in 120 minutes.

When dialyzed leukemic urine was mixed with an aqueous solution of DNA at room temperature and TCA added immediately, there resulted a decreased precipitation of DNA as measured turbidimetrically. Chart 1 compares a leukemic with normal urine, both of which had been concen-

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>EFFECTS OF DIALYZED NORMAL AND LEUKEMIC URINE ON CALF THYMUS DNA</th>
<th>Expressed as per cent of DNA not precipitated by TCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCUBATION CONDITIONS</td>
<td>NORMAL</td>
<td>CHRONIC LYMPHOBLASTIC LEUKEMIA</td>
</tr>
<tr>
<td>TIME OF INCUBATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(min.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unheated urine</td>
<td>DNase I 0 5 60 0 36 43 82 5 60 39 87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNase II 0 1 43 50 63 60</td>
<td></td>
</tr>
<tr>
<td>Heated urine</td>
<td>DNase I 0 1 53 56 38 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNase II 1 2 53 55 38 39</td>
<td></td>
</tr>
</tbody>
</table>

* The urine of this patient was diluted 1:3 with water after being heated.
detectable in active urines from five of these patients. In earlier experiments, the undialyzed urines of twenty of a group of 24 untreated patients solubilized over 80 per cent of the calf-thymus DNA in the standard DNase II assay system in 3 hours. It is most probable that these urines did not exhibit DNase II activity and that acid-solubilization of DNA occurred immediately.

Leukemic urines were active while the patients were in relapse of their disease and remained active during depression of the bone marrow and blood elements following chemotherapy. The rapid destruction of a large number of leukemic cells by therapy, decrease in the sizes of the spleen and lymph nodes and increased urinary excretion of uric acid was not accompanied by the appearance of the activity in the urines which had been initially devoid of that activity. None of the patients had overt renal function impairment or proteinuria (except for a trace of protein in the urine of a few subjects). In two subjects, one with acute myeloblastic leukemia and one with acute monoblastic leukemia, the urine remained active while the patients were solely on intravenous therapy and were not taking anything orally.

The urines of eighteen of 22 nonleukemic patients with advanced cancer, frequently accompanied by general metastases and invasion of the bone marrow, were inactive. The urines of 40 normal subjects were inactive.

Heating dialyzed urine for 5 minutes at 98° C. indicates that, whatever the precise nature of the effect on DNA, the responsible factor is not a DNase. The factor in leukemic urine was completely inactivated in 0.1 N NaOH in 15 minutes at 98° C. and in 0.5 N HCl in 45 minutes at the same temperature.

Evidence that the nondialyzable factor is most probably polypeptidic in nature was obtained in the following manner. Dialyzed urines from four leukemic patients were concentrated five- to tenfold by evaporation on a steam bath at atmospheric pressure. The urines were then diluted with water to the extent that 0.2 ml. of these solutions would prevent the precipitation of not more than 1 mg. of calf-thymus DNA in a final volume of 2 ml containing 9 per cent TCA. Samples of the urines were then adjusted to pH 2.5, and crystalline pepsin was added to a concentration of 50 μg/ml. Aliquots were immediately withdrawn for test as above and the remainder incubated at 37° C. for 1 hour. Urines at pH 2.5 incubated without pepsin served as controls. Equal aliquots of the incubated samples were then added to calf-thymus DNA solutions, followed by TCA, diluted with water, and the turbidities recorded. In all cases TCA was added 1 minute after mixing. Duplicate samples were centrifuged, and the diphenylamine reaction (2) was applied to the supernatant solutions. The results given in Table 3 demonstrate complete inactivation of the leukemic urine by pepsin.

The use of pepsin also permitted the demonstration that the effect on DNA was reversible. Herring-sperm DNA, 1 mg/ml in dilute HCl, pH 2.5, was supplemented with either concentrated leukemic urine, concentrated leukemic urine plus pepsin, or water plus pepsin. Aliquots of these mixtures were withdrawn immediately after mixing, TCA added, and turbidities recorded. The remain-
ing solutions were incubated at 37° C., aliquots withdrawn after 10 and 25 minutes, TCA added, and turbidities again recorded. The data in Table 4 show that the acid precipitability of the DNA incubated with pepsin or with urine remained constant. The DNA incubated with urine plus pepsin became increasingly less acid-soluble, full restoration of precipitability occurring after 25 minutes. This reversal is indicative of the nonenzymic effect of the leukemic factor on DNA. If an enzymic degradation of the DNA had taken place it would not be expected that incubation with pepsin would cause recombination of split products of the DNA to produce an acid-insoluble polymer.

Active solids were obtained from concentrated dialyzed leukemic urine by precipitation with ethanol. In Table 5 are shown their effects on calf thymus DNA and calf liver ribonucleic acid (RNA). Prevention of precipitation is not limited to DNA. The leukemic material was not inactivated by contact with 38 per cent TCA for 1 minute at room temperature. Solids prepared in comparable fashion from normal urine were inactive. When aqueous solutions containing 1.5 mg/ml of the leukemic solids were incubated for 1 hour at 37° C. with pepsin (50 μg/ml, pH 2.5), chymotrypsin (20 μg/ml, pH 7.5), and trypsin (50 μg/ml, pH 7.5), the activity toward both DNA and RNA was abolished. Incubation under comparable conditions but in the absence of the proteolytic enzymes resulted in no loss of activity. The amounts of active precipitates obtained from the urine of five leukemic patients ranged from 0.2 to 1.4 gm/l.

The amounts of material precipitated at the same alcohol concentration from the urine of four normal subjects ranged from 0.4 to 0.5 gm/l. When analyzed for protein content by the method of Lowry et al. (7), the solids from leukemic urine were found to consist of 20–98 per cent protein, while the solids obtained from normal urines contained no more than 6 per cent protein. In attempting to analyze for protein by a conventional biuret method, difficulty was encountered because of high blank readings in the absence of copper. Corrections for these blanks yielded protein values of the order of 50 per cent lower than those obtained by the method of Lowry et al. (7). The results obtained by both methods, however, revealed that considerably more protein was present in the leukemic materials than in those obtained from the normal subjects. Preliminary results of amino acid analysis by one-dimensional paper chromatography of 6 N HCl hydrolysates of preparations from two leukemic subjects revealed the presence of at least eleven ninhydrin-positive compounds in each.

The lack of knowledge of the precise chemical nature of the leukemic urinary substance, which is undoubtedly polypeptidic, prevents cogent discussion concerning its physiological significance in leukemia. No information is available as to whether it plays a role in nucleic acid metabolism. Some unpublished experiments in this laboratory demonstrated that the substance is not an inhibitor of crystalline pancreatic DNase or of DNase II of human leukemic leukocytes. The nature of the combination of the leukemic material with nucleic acids in vitro is not known. The solubilization of these compounds in TCA points to the formation of nucleic acid-polypeptide complexes in which the

---

### TABLE 3

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Control</th>
<th>Pepsin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absorbance in Discus reaction</td>
<td>Turbidity, Klett readings</td>
</tr>
<tr>
<td></td>
<td>Time of incubation (min.)</td>
<td>Time of incubation (min.)</td>
</tr>
<tr>
<td>Chronic myelocytic leukemia</td>
<td>60 0</td>
<td>60 0</td>
</tr>
<tr>
<td>Acute myeloblastic leukemia</td>
<td>0.415 0.415</td>
<td>0.085 11 8 110</td>
</tr>
<tr>
<td>Acute myeloblastic leukemia</td>
<td>0.400 0.400</td>
<td>0.060 14 20 113</td>
</tr>
<tr>
<td>Erythroleukemia</td>
<td>0.415 0.450</td>
<td>0.010 45 38 119</td>
</tr>
<tr>
<td>Normal urine</td>
<td>0.005 0.350</td>
<td>0.080 50 50 118</td>
</tr>
<tr>
<td>Water</td>
<td>0.010 0.010</td>
<td>0.010 114 117 117</td>
</tr>
</tbody>
</table>

---

### TABLE 4

Conversion by Pepsin of Acid-soluble DNA in Leukemic Urine to Acid-insoluble DNA

<table>
<thead>
<tr>
<th>Incubation time (min.)</th>
<th>DNA+water+ peptic</th>
<th>DNA+urine+ water</th>
<th>DNA+urine+ peptic</th>
<th>Klett readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>850</td>
<td>147</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>850</td>
<td>160</td>
<td>880</td>
<td></td>
</tr>
</tbody>
</table>

---

*We are indebted to Dr. E. L. Grinnan for a sample of calf-liver RNA.

* The crystalline enzymes were obtained from Worthington Biochemical Corporation, Freehold, N.J.
components are tightly bound. Possibly these complexes assume a net positive charge which prevents aggregation in the acid solution.

SUMMARY

The urine of patients with various forms of leukemia contains a nondialyzable, heat-stable substance which prevents the precipitation of nucleic acids by trichloroacetic acid. The leukemic urinary substance is polypeptidic but is not a deoxyribonuclease. The substance can be isolated as a crude solid by precipitation with ethanol from concentrated leukemic urine. Substances with similar activity are absent from normal human urine and are most probably excreted rarely by patients with nonleukemic malignancies.

REFERENCES

A Polypeptidic Substance Found in Human Leukemic Urine Which Promotes Nonenzymic Acid Solubility of Nucleic Acids

Marvin Tunis, Herbert Weinfeld and Avery A. Sandberg


Access the most recent version of this article at: [http://cancerres.aacrjournals.org/content/18/8_Part_1/911](http://cancerres.aacrjournals.org/content/18/8_Part_1/911)

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.