A Histochemical Study of Succinic Dehydrogenase and Cytochrome Oxidase in Proliferative Lesions of the Large Intestine*

LEE W. WATTENBERG†

(Department of Pathology, University of Minnesota Medical School, Minneapolis, Minn.)

Morphologic histochemical studies of a number of oxidative enzymes in normal mucosa and proliferative lesions of the large intestine of man have previously been reported (15). In these studies, a weak succinic dehydrogenase activity was observed in poorly differentiated carcinoma of the large bowel. This finding is in accord with other investigations in which a low succinic dehydrogenase activity has been found in a variety of malignant neoplasms (11, 12). However, since a decrease in activity of this enzyme also occurs in rapidly proliferating nonmalignant tissue, such as regenerating liver (7, 8, 14), it is apparent that the metabolic change it reflects is not specific for malignancy.

In contrast to the low succinic dehydrogenase activity of poorly differentiated carcinoma of the large intestine, epithelial components with high as well as low activities of this enzyme were found to be present in well differentiated malignant glands of this anatomic site (15). Similarly, in benign proliferative lesions of the large bowel, epithelia with quite marked differences in succinic dehydrogenase activity were observed in specific components of these tissues. In some instances, the weakly reacting benign elements showed as little or even less activity than that found in malignant tissue.

In the present report, the results of further investigations of succinic dehydrogenase activity in proliferative lesions of the large intestine are presented. It will be shown that there is a decrease in the activity of this enzyme in elements of all proliferative lesions studied. This decrease in enzyme activity would appear to reflect an aspect of altered metabolism common to both benign and malignant proliferative processes of the mucosa of the large intestine. With regard to the observation of epithelium manifesting relatively high succinic dehydrogenase activity, it will be shown that in benign proliferative lesions of the large intestine a well defined orientation exists between the cells with differing activities. The epithelium with weak activity is found to be superficial to the epithelium manifesting a more intense reaction in the glands of these lesions. In malignant tissues this relationship is lost, and this loss may constitute an early indication of carcinogenesis.

In addition to succinic dehydrogenase, histochemical studies of the enzyme cytochrome oxidase have likewise been carried out in proliferative lesions of the large bowel. The activity of this enzyme also decreases in elements of all the proliferative lesions studied. However, its activity frequently does not parallel that of succinic dehydrogenase.

MATERIALS AND METHODS

The tissues employed in the present study were obtained from surgically resected specimens. Included are 61 carcinomas of the large intestine, 60 adenomatous polyps, and 29 areas of focal hyperplasia. The lesions of focal hyperplasia were all present in the mucosa close to infiltrating carcinoma. Succinic dehydrogenase activity was studied in all the tissues enumerated. The procedure used for cytochrome oxidase has only recently become available (6) and was employed in tissues obtained during the latter part of the study: carcinoma, 20; adenomatous polyps, 25; and hyperplasia, 12.

The procedures for the handling of the tissues and for the histochemical demonstration of succinic dehydrogenase, DPN diaphorase, and TPN diaphorase have been described previously (15). Cytochrome oxidase was demonstrated by a modification of the Nadi reaction* (6). In addition to

1 The 4-amino-1-N,N-dimethylaminobenzaldehyde used initially in this study was generously made available to us by D.
the use of untreated frozen sections for the modified Nadi reaction, parallel sections extracted with ethyl acetate for 5 minutes at 4°C were employed. This extraction did not significantly alter the enzyme activity, but the removal of lipide gave a somewhat sharper localization of the colored deposition product. A 10-minute incubation period at 37°C was used for the succinic dehydrogenase, DPN diaphorase, and TPN diaphorase procedures, and a 15-minute incubation period for the cytochrome oxidase procedure. Sections 16μ thick were employed for all the histochemical work.

RESULTS

Normal mucosa.—In the normal mucosa, the histochemical reactions differ in the surface epithelium, the nonmucoid epithelium at the base of the glandular crypts, and the mucoid epithelium lining the remainder of these crypts. This mucoid epithelium is characterized by the presence of large numbers of goblet cells. With the succinic dehydrogenase procedure, the nonmucoid cells at the base of the crypts give the most intense reaction, which is manifested as a dark blue staining of the cytoplasm of these cells. The staining is not uniform but is most pronounced in the periluminal area of the cytoplasm. The surface epithelium stains a slightly lighter color than the basal cells. However, in the surface epithelium the greatest color intensity is at the base of the cells. The least intense staining occurs in the mucoid cells of the crypts (Fig. 1). The histochemical procedure for cytochrome oxidase results in a slightly lighter staining of all the epithelial components of the mucosa than that observed for succinic dehydrogenase. The surface epithelium and all the crypt epithelium stains with about the same intensity, with the exception that in the surface epithelium the base of the cell stains slightly more intensely than other portions of this cell or the crypt epithelium (Fig. 2). It should be emphasized that the nonmucoid cells at the base of the crypts give either the same intensity or a slightly lighter staining for cytochrome oxidase than do mucoid cells of the crypts, a situation which is in striking contrast to that observed for succinic dehydrogenase (Figs. 1, 2).

Focal mucosal hyperplasia.—Small focal areas of hyperplasia may be found in the mucosa of the large intestine in the vicinity of carcinomas (5, 10). In such lesions, the surface epithelium and all cells except for the nonmucoid cells at the base of the crypts stain very lightly with the succinic dehydrogenase procedure (Fig. 3). The nonmucoid basal cells vary in their staining intensity from specimen to specimen. However, in most instances they stain with the same intensity as the nonmucoid basal cells of the crypts of the normal mucosa, and, like these, the deepest staining is in the periluminal area. With the procedure for demonstrating cytochrome oxidase, very light and often no staining at all occurs in the surface epithelium, and in all of the crypt epithelium including the nonmucoid basal cells.

Benign adenomatous polyps.—Benign adenomatous polyps are quite variable both in their morphologic features as well as in their histochemical reactions. In most of these lesions, however, three distinctive morphologic components are apparent: (a) the surface epithelium, (b) atypical glands composed of nonmucoid cells or cells having smaller mucus droplets than those of the crypt epithelium of the normal mucosa, and (c) glandular elements very closely resembling those of the normal colon. The atypical glands frequently occupy the superficial portion of the polyp. The depth to which they penetrate and the relative portion of the total glandular mass of the polyp which they comprise vary.

The surface epithelium and outer portion of the crypts of the atypical glands stain lightly with both histochemical procedures (Figs. 4, 5). In some instances, no staining at all is observed; in other cases, the staining may be only slightly lighter than that of the surface epithelium of the normal mucosa. The deeper lying atypical epithelium stains relatively intensely. With the procedure for demonstrating succinic dehydrogenase, this epithelium may attain a deep blue color which is of a similar intensity to, or even darker than, that of the nonmucoid basal cells and which, paralleling the finding in these cells, is frequently most intense in the periluminal area (Fig. 4). The cytochrome oxidase procedure generally results in an intensity of staining of the deeper lying atypical epithelium which is comparable to or at most slightly greater than that of the crypt epithelium of the normal mucosa (Fig. 5).

Some of the glandular elements of adenomatous polyps resemble those of the normal mucosa both in morphologic form and histochemical reactions (Figs. 6, 7). Goblet cells containing mucoid epithelium similar to that found in the crypts of the normal mucosa comprise most of this tissue. In the terminal glandular elements adjacent to the stalk of the polyp, nonmucoid epithelium is found which resembles that of the nonmucoid basal cells of nor-

Marvin M. Nachlas, Dept. of Surgery, Johns Hopkins Medical School; subsequently, preparations synthesized by Mr. J. Lionel Leong, Dept. of Pathology, University of Minnesota, were employed.
mucosa. In this nonmucoid epithelium of the polypl the succinic dehydrogenase activity is high. In contrast, the staining for cytochrome oxidase is relatively weak, often being even lighter than that found in the glands of the normal mucosa (Figs. 6, 7).

In adenomatous polyps, because of the multiplicity and variation in glandular forms, the relationship between glandular components with high succinic dehydrogenase activity and those with weaker activities may be somewhat difficult to perceive. However, a careful study indicates that for each gland form the more intense staining occurs in the deeper portion and weaker activities are present more superficially. When a polypl has essentially a double layer of glands with elements of the atypical glands adjacent to the bowel lumen and glands resembling those of the normal mucosa in a deeper position, there is a corresponding double layer of lighter and more deeply staining gland components evident with the succinic dehydrogenase procedure.

Infiltrating carcinoma.—Most carcinomas of the large intestine are composed largely of well differentiated malignant gland forms. However, even in such well differentiated lesions, some poorly differentiated elements occur, and occasionally these predominate. With both the succinic dehydrogenase and cytochrome oxidase procedures, poorly differentiated carcinoma stains weakly or not at all. In well differentiated carcinomatous glands, a more complex situation exists, particularly with regard to succinic dehydrogenase. While much of the epithelium stains very lightly, some components show relatively intense staining, and in some instances darkly stained tumor cells are present (Fig. 8).

While the cytochrome oxidase activity of carcinomas shows some variation, the vast bulk of this malignant tumor tissue stains very weakly for the enzyme.

In situ carcinoma.—In situ carcinoma can be found in an occasional adenomatous polypl. Twelve such lesions were available for study in the present work. The malignant areas are characterized by disorganization of the epithelium, with loss of nuclear polarity. Irregularity of nuclear size with large and bizarre forms may be present, and enlarged nucleoli may also be seen. In some instances, intraglandular bridging and a cribriform pattern are found. Where manifestly malignant morphologic features occur, the histochemical reactions are similar to those observed in infiltrating carcinoma. In many areas of the malignant polypl the epithelium of the atypical glands present does not show morphologic evidence of malignancy. However, a decrease in succinic dehydrogenase and cytochrome oxidase activity may occur in such epithelium, including that portion occupying the deepest part of the atypical glands (Fig. 9). It is apparent that in these atypical glands, there has been a disruption in the orientation characteristic of benign proliferative lesions in which cells with relatively high succinic dehydrogenase activity occupy basal gland areas.

In malignant polypls manifesting a loss of orientation of gland elements with differing succinic dehydrogenase activities, the decrease in succinic dehydrogenase activity which is observed in the deep portion of the atypical glands may be uniform or there may be an irregular decrease in activity imparting a "moth-eaten" appearance to the glands (Figs. 9, 12, and 14). In some of these areas, transitions can be observed between epithelium which appears benign as judged by classical morphologic features and adjacent manifestly malignant epithelium, and in which both the benign and malignant-appearing morphologic forms have low activities of the two enzymes (Figs. 11–14). These findings suggest that the morphologically benign-appearing epithelium has undergone some of the metabolic changes found in carcinoma. Additional evidence for this interpretation is the frequent occurrence of high DPN diaphorase activity in such epithelium (Fig. 10). Occasionally, an increase in TPN diaphorase will also be observed. A high DPN diaphorase and TPN diaphorase activity have previously been described as being part of the histochemical reaction pattern characteristic of carcinoma of the large bowel (15).

DISCUSSION

In the present study, morphologic histochemical technics have been employed in an effort to delineate enzymatic characteristics of the diverse cell types found in the normal mucosa and in proliferative lesions of the large bowel. Since in considering the results obtained, implications are drawn as to the relative activities of each of the enzymes in the cells under investigation, it is pertinent to discuss initially the validity of making such semiquantitative interpretations.

The histochemical procedures for demonstrating succinic dehydrogenase and cytochrome oxidase are based upon quantitative reactions. In the case of succinic dehydrogenase, this has been shown to be true for homogenates (9) and also for tissue sections prepared in a manner comparable to that used in the present study (3, 4). Freezing and thawing do not appreciably alter the enzyme activity as determined by tetrazolium salt reduction (9). For the modified Nadi reaction, a quanti-
tative adaptation of the histochemical procedure comparable to that developed for the original Nadi reaction (13) has not been reported. However, it has been found that the deposition product can be quantitatively extracted from tissue sections with a mixture of equal parts of tetrachloroethylene and ethanol following procedures previously described for this type of extraction (3, 4). Quantitative studies of the amount of deposition product formed with variation of conditions such as the duration of incubation, the amount of tissue present, and the cytochrome c content of the reaction mixture indicate that the modified Nadi reaction in tissue sections is of a quantitative nature. In the two morphologic histochemical procedures a crude approximation of the relative enzyme activities of various cells has been made from a visual estimation of the amount of deposition product present. Such estimations can lead to erroneous interpretations if they are arrived at uncritically. In particular, variations in the size and distribution of the deposition products of cells whose activities are being compared can lead to difficulties in interpretation (2). This point has been kept in mind in reporting the relative enzyme activities from the histochemical preparations used in the present investigation. The decreases in enzyme activity which have been emphasized in the descriptions of proliferative lesions are of such a nature that it is not possible for them to be due to a peculiarity of the form of the deposition product. In many instances the cells are either completely colorless or at most have only a trace of color. Likewise, in those instances in which increases in staining intensity are alluded to, the distribution of the deposition product and the depth of the color are such as to make it very unlikely that a misinterpretation is being made.

In elements of all the proliferative lesions of the large bowel studied, a decrease in staining for succinic dehydrogenase and cytochrome oxidase as compared with that found in the normal mucosa has been observed. In malignant lesions, a weak reaction for both succinic dehydrogenase and cytochrome oxidase is found in poorly differentiated tumor epithelium. In benign and well differentiated malignant proliferative lesions, components with low activities of the two enzymes are also present. These include the surface epithelium and outer portion of the crypts of atypical glands of benign adenomatous polyps, the surface epithelium and all the crypt epithelium except for the nonmucoid basal cells of hyperplastic mucosa, and some glandular elements of well differentiated carcinoma.

In contrast to the glandular components of benign proliferative lesions which have low succinic dehydrogenase activity, other components are present which have high activity. These elements with the high activity occur in the basal portion of glandular crypts. There is thus a well defined orientation of cells with low and high succinic dehydrogenase activity, the weakly reactive components being superficial to the more strongly reactive ones. A characteristic feature of the high succinic dehydrogenase activity of the basal elements is that it is not associated with a comparably high cytochrome oxidase activity and in this regard parallels the findings in the basal cells of the glands of the normal mucosa. This discrepancy in the level of activities of the two enzymes relative to one another suggests the possibility that more than one relationship may exist between succinate oxidation and electron transport. This concept is in accord with recently reported quantitative studies of succinate oxidation by beef heart mitochondria which also indicate that more than one electron transport system occurs (1). Since a decrease in succinic dehydrogenase activity has been found to reflect a metabolic alteration accompanying cellular proliferation in the mucosa of the large intestine, the occurrence of more than one relationship between succinate oxidation and enzymes involved in electron transport would suggest that more than one factor affecting succinate oxidation may operate in the control of cellular proliferation.

The cells in which the high succinic dehydrogenase is accompanied by a relatively weak cytochrome oxidase activity are those which are most strategically placed for control of gland penetration. This is clearly apparent for the cells at the base of glandular crypts which define the position of the base of the glands and must therefore be in some sort of equilibrium with the underlying tissues. It thus appears possible that the form of succinic dehydrogenase which is accompanied by a relatively weak cytochrome oxidase activity reflects a special mechanism for controlling the level of deepest penetration of glandular elements into adjacent structures.

The significance of the loss of a control mechanism for limiting gland penetration would be to endow the glands with the potentiality of continued growth into surrounding tissues. One distinction between benign and malignant gland forms would thus be defined in terms of an inability of the benign forms to penetrate owing to the presence of a system fixing the relationship of the deepest glandular components to that of the surrounding normal tissues. The existence of this...
fixed rim thus would result in an expansive type of growth occurring in an upward and lateral direction. On the other hand, in malignant forms orientation is lost, and an infiltrative type of growth occurs.

In malignant polyps, epithelium with weak succinic dehydrogenase activity is found in basal gland areas, and in more advanced malignant lesions low activity is frequently evident in the elements of the infiltrating margin of the tumor. In both instances proliferating epithelium, no longer restricted by the control mechanisms postulated to occur in basal cells of nonmalignant lesions, is in immediate relationship to underlying normal structures and thus has the potentiality of unlimited penetration into these structures. However, even with this potentiality, certain additional alterations in the metabolic pattern of the cells would almost certainly be necessary in order for them to survive and proliferate under conditions extant for infiltrating carcinoma. The increase in both DPN diaphorase and TPN diaphorase activities which have been found to occur in components of manifestly infiltrating carcinoma of the large bowel (15) would appear to reflect an aspect of such a metabolic pattern of malignancy.

In malignant polyps containing in situ carcinoma, epithelial elements have been observed deep within the polyp which do not appear malignant by classical morphologic criteria and yet show either a uniformly low succinic dehydrogenase activity or intimately related zones of high and low succinic dehydrogenase activity. This epithelium can be traced into adjacent areas which morphologically show unquestionable malignancy and where a low succinic dehydrogenase is also present. It would appear likely that the small focal decreases in succinic dehydrogenase activity in this nonmalignant-appearing epithelium are an incipient evidence of carcinogenesis. When such glandular components do not show other evidence of malignancy, as for example an increase in diaphorase activity, they probably represent transition forms which have undergone one, but not all, of the metabolic changes essential to malignant behavior, a phenomenon which could be termed “partial malignant transformation.” Virtually all gradations between this state and morphologically manifestly malignant carcinoma in situ exhibiting low succinic dehydrogenase activity and high DPN diaphorase and TPN diaphorase activities can be seen in malignant polyps of the large intestine, presumably reflecting different metabolic stages in the conversion of cells to a completely malignant state.

SUMMARY

A morphologic histochemical study of succinic dehydrogenase and cytochrome oxidase in normal mucosa and proliferative lesions of the large bowel mucosa including focal hyperplasia, benign adenomatous polyps, malignant adenomatous polyps, and infiltrating carcinoma has been carried out.

A decrease in staining for succinic dehydrogenase and cytochrome oxidase occurred in elements of all the proliferative lesions studied, and this appears to reflect an aspect of a metabolic pattern common to both benign and malignant proliferative processes of the large bowel mucosa.

In benign and in well differentiated malignant lesions, there were elements with high as well as elements with low succinic dehydrogenase activity. In the benign lesions, a clearly defined orientation exists in which weak activity occurred super-

Dye deposits resulting from the activity of succinic dehydrogenase or cytochrome oxidase appear as black or a darker gray than that of the background. Sections used for the histochemical reactions are 16μ thick, those stained with hematoxylin and eosin are 6μ thick. All preparations are frozen sections.

Fig. 1.—Normal mucosa of the large intestine. Succinic dehydrogenase. Note relatively intense staining of the cells at the very base of the glandular crypts. X80.

Fig. 2.—Normal mucosa of the large intestine. Cytochrome oxidase. The cells of the base of the crypts stain either the same intensity or slightly lighter than those of the remainder of the crypts, compare with Figure 1. X80.

Fig. 3.—Focal hyperplasia of the large intestine. Succinic dehydrogenase. The thickened portion of the mucosa in the right half of the field is a focal area of hyperplasia. The surface epithelium and crypt cells, except for the basal cells, stain very lightly; the cells at the base of the crypts stain more intensely. X15.

Fig. 4.—Benign adenomatous polyp. Succinic dehydrogenase. The surface epithelium and the superficial portions of the atypical glands stain very lightly. The larger and very intensely staining structures in the right lower part of the field are the deeper portions of the atypical glands. Interspersed between these heavily stained elements are smaller and more lightly staining glandular components formed of mucosal epithelium containing goblet cells. X80.

Fig. 5.—Benign adenomatous polyp. Section from same block as Figure 4 Cytochrome oxidase. The surface epithelium and the superficial portions of the atypical glands stain very lightly. Note the relative uniformity of staining of all the deeper glandular elements as contrasted to Figure 4. X80.

Fig. 6.—Benign adenomatous polyp. Succinic dehydrogenase. Note relatively high activity of the basal cells adjacent to the stalk of the polyp, lower central portion of the field. X80.

Fig. 7.—Benign adenomatous polyp. Same block as Figure 6. Cytochrome oxidase. The basal cells stain either the same intensity or lighter than other glandular elements. Compare with Figure 6. X80.
Fig. 8.—Infiltrating carcinoma of the large intestine. Succinic dehydrogenase. Both light and relatively dark staining tumor components are present. Note the irregular reactivity present in some of the gland elements with light and darker staining zones of varying sizes interspersed. $\times 120$.

Fig. 9.—Malignant adenomatous polyp. Succinic dehydrogenase. The field depicted is at the base of the polyp. The right half includes elements of atypical glands with irregular staining whereas, in the left half, more uniformly deep staining is present. $\times 80$.

Fig. 10.—Malignant adenomatous polyp. Same block as Figure 9. DPN diaphorase. The gland elements corresponding to those showing irregular succinic dehydrogenase activity, Figure 9, have a high DPN diaphorase activity, those with more uniformly intense succinic dehydrogenase activity have a weak DPN diaphorase activity $\times 80$.
Fig. 11.—Malignant adenomatous polyp. Hematoxylin and eosin. In the lower central portion of the field the epithelium is manifestly malignant as evidenced by its gross disorganization. ×40.

Fig. 12.—Malignant adenomatous polyp. Same block as Figure 11. Succinic dehydrogenase. Much of the morphologically malignant appearing epithelium in the lower central portion of the field stains lightly, irregular staining of surrounding glandular elements is present. ×40.

Fig. 13.—Malignant adenomatous polyp. Higher power view of lower central portion of the field of Figure 11. Hematoxylin and eosin. Note the transitions between the well organized epithelium which morphologically does not appear malignant and the disorganized manifestly malignant glands occupying most of the right upper portion of the field. ×140.

Fig. 14.—Malignant adenomatous polyp. Higher power view of lower central portion of Figure 12. Succinic dehydrogenase. Note that the glands in the left half of the field, while morphologically appearing nonmalignant, Figure 13, are manifesting evidence of carcinogenesis as indicated by the irregular loss of succinic dehydrogenase activity. ×140.
ficial to more intense activity. A loss of this orientation occurred in malignancy and may provide early evidence of carcinogenesis in glandular components which do not appear malignant as judged by conventional morphologic features.

In the cells at the base of the glandular crypts of the normal mucosa, hyperplastic mucosa, and benign adenomatous polyps, a high succinic dehydrogenase activity was observed, but the cytochrome oxidase activity was not correspondingly elevated. This observation suggests that the relationship between succinate oxidation and enzymes involved in electron transport differs in these sites from that of the remainder of the cells of these tissues.

It is suggested that succinate oxidation associated with a relatively weak cytochrome oxidase activity may reflect a mechanism for control of gland penetration into surrounding structures; and that, in carcinogenesis of the mucosa of the large bowel, a loss of this control mechanism occurs.

ACKNOWLEDGMENTS

The technical assistance of Mr. J. Lionel Leong and Mrs. Delores Thompson are gratefully acknowledged.

REFERENCES

A Histochemical Study of Succinic Dehydrogenase and Cytochrome Oxidase in Proliferative Lesions of the Large Intestine

Lee W. Wattenberg

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/19/10/1118.citation

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/19/10/1118.citation.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.