The Failure of Freund’s Adjuvant To Affect the Survival of Mice with Transplanted Sarcoma 180*

M. D. Schoenberg† AND R. D. Moore
(Institute of Pathology, Western Reserve University, Cleveland 6, Ohio)

SUMMARY
The treatment of CFW Swiss mice with complete Freund’s adjuvant before and after the transplantation of Sarcoma 180 intraperitoneally or subcutaneously did not affect the survival of the mice or rejection of the tumor transplants.

Attempts to prevent or augment the growth of transplants of tumors have been numerous (8). Many of these have employed the use of exogenous agents directly affecting the tumor cells. Others have attempted to stimulate host defenses against tumor growth, as for example by the induction of an inflammatory process. In recent years attention has been attracted to the role of the reticulo-endothelial system in the host defenses against transplanted tumors. Alterations in the cell population of the spleen and lymph nodes associated with spontaneous and transplanted tumors have been described. Efforts to increase host resistance to transplantable tumors of mice by stimulation of the reticulo-endothelial system have been reported (1, 2, 5, 6, 9).

Old, Clark, and Benacerraf (5) have indicated that certain strains of mice infected with Bacillus Calmette-Guérin will reject the solid form of Sarcoma 180, and that mice inoculated with Ehrlich ascites tumor, when infected by this organism, survive twice the expected length of time. These authors have suggested that the increased host resistance to the tumor is the result of proliferation and increased phagocytic activity of the reticulo-endothelial cells.

Working on a similar hypothesis, that the host defense against transplanted tumors might be directly correlated with a hyperactive and hyperplastic reticulo-endothelial system, the effect of complete Freund’s adjuvant containing Mycobacterium butyricum on the development of the ascitic and solid (subcutaneous) forms of Sarcoma 180 was studied. Administration of complete Freund’s adjuvant leads to the proliferation of reticulo-endothelial cells (4, 7) and frequently to an increase in antibody production.

MATERIALS AND METHODS
Young male and female CFW Swiss mice, which weighed 16–20 gm., were used in these experiments. The animals were divided into six groups: Freund’s adjuvant administered intraperitoneally before transplantation of ascites Sarcoma 180; Freund’s adjuvant administered intraperitoneally after transplantation of ascites Sarcoma 180; Freund’s adjuvant administered subcutaneously before transplantation of ascites Sarcoma 180; Freund’s adjuvant administered subcutaneously before transplantation of ascites Sarcoma 180; Freund’s adjuvant administered intraperitoneally after transplantation of Sarcoma 180 subcutaneously; and, Freund’s adjuvant administered subcutaneously before transplantation of Sarcoma 180 subcutaneously (Table 1).

Sarcoma 180 was always transplanted with the use of 0.25 cc. of undiluted ascitic fluid. Freund’s adjuvant was given in doses ranging from 0.01 to 0.5 ml.

RESULTS
The inoculation of adjuvant had no effect on prolonging the survival of the animals, or on their capacity to reject tumor implants (Table 1). However, the animals that received large doses of adjuvant (0.5 ml.) 1 day before or 1 day after transplantation of ascites Sarcoma 180 died more

* This work was supported in part by a grant (A 1909) from the United States Public Health Service.
† Senior Research Fellow (SF-889), United States Public Health Service.

Received for publication May 16, 1960.
rapidly. Except for these instances no statistically significant variations in the survival of the experimental versus the control tumor animals were found either as a function of dose, time of injection, or route of administration of adjuvant.

When the adjuvant was given after the ascites form of Sarcoma 180, those mice with ascites had ruffled, wet fur. These changes commenced within 1 hour after injection and persisted for several days. A similar but less severe and more transitory type of response occurred in those animals which received only Freund’s adjuvant or adjuvant prior to the development of recognizable ascites. There was no deaths as a consequence of injection of Freund’s adjuvant intraperitoneally in 145 control animals or subcutaneously in 80 control animals.

DISCUSSION

Alteration of the reticulo-endothelial system with complete Freund’s adjuvant failed to prolong the survival of CFW Swiss mice given injections of ascites Sarcoma 180, or alter the course of the growth of Sarcoma 180 implanted subcutaneously. There was evidence that large doses of Freund’s adjuvant given intraperitoneally resulted in a more rapid death of the animals inoculated with the ascites form of Sarcoma 180. The amount of ascitic fluid in these animals was far less than that in the corresponding control animals at the same time. Gross examination of the animals showed a large amount of solid tumor in the peritoneal cavity.

Whether the decrease in survival was due to a depression of the animals’ resistance to the growth of the tumor or the summation of two severe injuries, the tumor and the inflammatory reaction produced by the adjuvant, is not apparent. The adjuvant is an irritant, and the degree of the inflammatory response and the reaction of the reticulo-endothelial system parallel the size of the dose given by any one portal. This may be similar to other types of injury, which have been reported to enhance tumor growth (3, 10).

REFERENCES

2. BRADNER, W. T.; CLARKE, D. A.; and STOCK, C. C. Stimu-
Schoenberg and Moore—Freund’s Adjuvant and Tumor-bearing Mice

The Failure of Freund's Adjuvant To Affect the Survival of Mice with Transplanted Sarcoma 180

M. D. Schoenberg and R. D. Moore

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/20/10/1505

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.