Studies with Mouse Pituitary Thyrotropic Tumors
I. Survival of Implants during Prolonged Suppression 
by Thyroid Hormone*

SIDNEY C. WERNER AND RAUL GRINBERG

(Department of Medicine, Columbia University College of Physicians and Surgeons, and 
the Presbyterian Hospital, New York, N.Y.)

SUMMARY

Implants of dependent mouse pituitary thyrotropic tumors survived prolonged sup-
pression of growth with thyroid hormone. With one dependent strain, 3052, no tumor 
became palpable after implantation in control mice with intact thyroid to 17 months. 
However, tumors regularly appeared in implanted radiothyroidectomized mice. The 
latent period to appearance of the tumor decreased with increasing time of suppression 
with thyroid hormone prior to thyroid ablation. The findings were similar with those of 
another radiothyroidectomized dependent strain, 4183, kept suppressed by thyroid 
feeding, then discontinued.

With an autonomous responsive L 24 strain, no tumors appeared in control mice 
with an intact thyroid, up to 10 months after implantation. Tumors appeared upon 
radiothyroidectomy, and the latent period was progressively less with more prolonged 
suppression. After 15 months, however, growths became palpable, even with an intact 
thyroid.

The pioneer work of Furth has led to the identi-
$\text{fication and isolation of a variety of hormonally}$ 
active mouse pituitary tumors (2). By destruction 
of the thyroid with $^{131}$I, Furth induced and main-
tained by serial transplantation, tumors of this 
type, secreting thyrotropin and not other pituitary 
hormones.

Some of these strains, “dependent,” are respon-
$\text{sive to thyroid hormone in that they do not grow}$ 
or may recede in the presence of circulating thy-
roid hormone. Others, “autonomous responsive,” 
respond when the tumor is small, but not lat-
$\text{er. Still other strains are completely non respon-
$\text{sive, “autonomous non-responsive.” Representative}$ 
strains were made available to this laboratory 
in June to September, 1958.

Studies were initiated of the fundamental biolo-
$\text{gy of the three tumor strains and of possible}$ 
mechanisms responsible for variations in responsi-
$\text{vness to thyroid hormone. As part of the work,}$ 
it was determined whether dependent, and autono-
$\text{mous responsive tumor implants survived when}$ 
kept under thyroid hormone suppression over 
prolonged periods of time. At the same time, 
$\text{studies of the effect of thyroxine and of a series}$ 
of available analogs of thyroxine on tumor growth 
and function were initiated. These results are 
being reported in this and in subsequent papers.

MATERIALS AND METHODS

Four tumor strains maintained in LAF$_1$ mice 
have been available: two dependent strains, 3052 
and 4183; one autonomous, responsive strain, L24; 
and an autonomous, nonresponsive strain, L23. 
The donor mice were killed, and the tumors growing 
in thigh muscles at the site of previous implantation, 
were dissected free. The tumor was immediately minced in Eagle’s solution with a 
fine scissors. Some of the mince was implanted 
through a 2-inch $\#18$-gauge needle into the right 
lateral thigh muscles of healthy LAF$_1$ mice, or 
with the thyroid destroyed by $^{131}$I. Female mice, 
1 month old and weighing approximately 18 gm. 
at the time of implantation, were used throughout.

* Aided by Contract SA-43ph-40, Cancer Chemotherapy 
National Service Center, National Cancer Institute, United 
States Public Health Service.

Received for publication October 10, 1960.
From 1958 to early 1959, the mice were fed a Rockland Farm diet containing 44 μg iodine/100 gm food. It was discovered that the diet maintained the serum protein-bound iodine (PBI) at over 25 μg per cent (5). Ken-L-Kibble medium low-iodine ration has been used since, containing 0.25 gm. per cent iodized salt. However, no evident difference in experimental results developed with the change in diet.

Before the thyroid was destroyed with I\(^{131}\), the mice were placed on a Remington (7) low-iodine diet (Nutritional Biochemicals, Inc.) containing 0.45 gm. per cent iodized salt and distilled water for 10 days. They were then given 50 μc. I\(^{131}\) intraperitoneally. Implantation was performed 10 days after this with the mice still on the same low-iodine diet and distilled water. Terramycin was given postoperatively for 48 hours. The animals were returned to the stock diet immediately after implantation was performed. With the responsive tumor strains, tumors developed at the site of implantation only in thyroidectomized animals. The tumors first appeared approximately 5 months after implantation with the 3053 and 4183 strains; after approximately 4 months with the L34 strain; and after 3 months with the L35 strain.

When thyroid was fed, the concentration in the diet was 0.13 gm per cent.

### RESULTS

#### Dependent strains

Experiments were conducted with the two dependent tumor strains, as follows: in the first series, A, the tumors were subjected to the effect of endogenous thyroid hormone from an intact thyroid in the host; in the second, B, the effect was observed of exogenous thyroid hormone upon tumors growing in mice with the thyroid destroyed by I\(^{131}\).

A dependent strain of tumor, 3052, was implanted (October, 1958) into 64 normal LAF mice. The animals were maintained on a Rockland Farm diet. The results are shown in Table 1. No tumors became palpable in any mouse with an intact thyroid, even as late as 1 year and 5 months after implantation in the ten mice remaining for this part of the experiment.

The other 54 mice were given I\(^{131}\) to destroy the thyroid, at intervals of from 3 months to 1 year and 3 months following implantation of the tumor. In every instance, when thyroid destruction was accomplished by a 50-μc. dose of I\(^{131}\), tumors ultimately appeared. However, only one of ten animals developed tumor when a smaller, 5-μc., dose of I\(^{131}\), was employed for the purpose.

The latent period for tumors to appear was strikingly different when thyroid destruction was performed after 3 months of suppression by endogenous thyroid hormone or when the thyroid was destroyed later. With destruction after 2 months of suppression, only two of thirteen ani-

### Table 1

<table>
<thead>
<tr>
<th>Months after tumor injection until radiothyroidectomy</th>
<th>Dose I(^{131}) (μc.)</th>
<th>No. tumors/total no. mice injected (months after radiothyroidectomy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7.0</td>
<td>0</td>
<td>0/10</td>
</tr>
<tr>
<td>9.5</td>
<td>5</td>
<td>1/10</td>
</tr>
<tr>
<td>7.5</td>
<td>50</td>
<td>0/13</td>
</tr>
<tr>
<td>9.0</td>
<td>50</td>
<td>2/10</td>
</tr>
<tr>
<td>6/10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mals had developed tumors by 4 months later; and it required 6 months before virtually all the mice had tumors (twelve of thirteen). With ablation after 14 months of suppression, four of eight mice developed palpable tumors 1½ months later. When the thyroid was destroyed at 7 and 11 months after implantation, the latent period until tumors appeared was between the two extremes, 3 and 2 months, respectively.

Twenty LAF mice, with thyroids destroyed by I\(^{131}\) administration 1½ weeks previously, were given implants of a responsive strain of tumor, 4183 (Table 2). Of these, seventeen were placed on Ken-L-Kibble medium, a relatively low-iodine diet, only. Tumors appeared uniformly in eleven of eleven surviving for approximately 6 months thereafter.

A second group of three mice was maintained after implantation on thyroid hormone in addition to the Ken-L-Kibble diet, 0.12 gm/100 gm food, for approximately 9 months. No palpable tumors appeared. Thyroid was then removed from the
diet, and within 2 months three of the three had evident tumors.

Autonomous, responsive strain.—The two types of experiments conducted with the dependent tumor strains were repeated with the autonomous responsive L24 strain of tumor. The first experiment (A) was begun June 23, 1958; the second (B), January 19, 1959.

A: Fourteen intact LAF mice were given implants of L24 tumor and maintained on Ken-L-Kibble medium ration. The subsequent events are depicted in Table 3. Tumors appeared in all when the thyroid was destroyed with I\(^{131}\) at 4\(\frac{1}{2}\) and 10 months after implantation of the tumor. The latent period between thyroid destruction and appearance of tumor was 5 months when the thyroid was destroyed 4\(\frac{1}{2}\) months after tumor implantation but only 2\(\frac{1}{2}\) months when the suppression by the thyroid was ended at 10 months after implantation. In contrast, no tumors appeared in any of the animals with an intact thyroid, up to the 10-month period when the

### TABLE 2

<table>
<thead>
<tr>
<th>DIETARY PERIOD (MONTHS AFTER IMPLANTATION)</th>
<th>TIME ON DIET AFTER IMPLANTATION (MONTHS)</th>
<th>TUMORS/MICE INJECTED</th>
<th>AV. TUMOR SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken-L-Kibble</td>
<td>Thyroid hormone+ Ken-L-Kibble</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–12</td>
<td>3½</td>
<td>8/17</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>5½</td>
<td>11/11</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11/11</td>
<td>++++</td>
</tr>
<tr>
<td>0–3</td>
<td>3½–12</td>
<td>5½</td>
<td>2/6</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2/4*</td>
<td>+</td>
</tr>
<tr>
<td>10–12</td>
<td>0–10</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5½</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0/3*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3/8*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3/3</td>
<td>+</td>
</tr>
</tbody>
</table>

* Two of the original six mice died between 8 and 12 months after implantation.

### TABLE 3

<table>
<thead>
<tr>
<th>EXP.</th>
<th>DIETARY PERIOD (MONTHS AFTER RADIOTHYROIDECTOMY)</th>
<th>MONTHS AFTER RADIOTHYROIDECTOMY</th>
<th>TUMORS/TOTAL NO. MICE INJECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 1</td>
<td>Ken-L-Kibble Thyroid hormone + Ken-L-Kibble</td>
<td>0</td>
<td>0/7</td>
</tr>
<tr>
<td></td>
<td>0–12</td>
<td></td>
<td>0/7</td>
</tr>
<tr>
<td></td>
<td>0–0</td>
<td>0</td>
<td>0/7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>7</td>
<td>2/7</td>
</tr>
<tr>
<td>2.</td>
<td>–10–0</td>
<td>0</td>
<td>0/7</td>
</tr>
<tr>
<td></td>
<td>0–4</td>
<td>2</td>
<td>0/7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>4</td>
<td>7/7</td>
</tr>
<tr>
<td>B. 1</td>
<td>0–4½</td>
<td>4½</td>
<td>7/7</td>
</tr>
<tr>
<td>2.</td>
<td>0–1½</td>
<td>4½</td>
<td>0/14</td>
</tr>
<tr>
<td></td>
<td>4½–6½</td>
<td>5</td>
<td>7/14</td>
</tr>
<tr>
<td>3</td>
<td>0–1½</td>
<td>5½</td>
<td>14/14</td>
</tr>
<tr>
<td></td>
<td>6½–7½</td>
<td>7½</td>
<td>6/6</td>
</tr>
</tbody>
</table>

* In Experiment A, tumors were implanted in intact mice, and the thyroid was subsequently destroyed; in Experiment B, the thyroid was destroyed, desiccated thyroid added to the diet for varying periods of time, and therapy discontinued.
second group of animals had their thyroids destroyed with \textsuperscript{131}I.

A second group of twenty mice was implanted with \textsuperscript{L24} tumor and maintained on a Rockland Farm diet. This group, not shown in the table, was left undisturbed, except for periodic examination for tumors, for approximately 13 months. Ten mice survived this long, and tumors were first noted at this time in three of these ten, despite the presence of the healthy thyroid of the host.

B: Twenty-nine mice were radiothyroidectomized and given implants of \textsuperscript{L24} tumor in July, 1958. Two months later thyroid was mixed with the feed of \textsuperscript{22} of these mice, 0.12 gm/100 gm food; seven were kept without added thyroid, as controls (Table 3). After 2\textfrac{1}{2} months of thyroid feeding, the hormone was removed from the diet of fourteen mice but was continued in the diet of the other eight mice. Tumors appeared in all fourteen mice off hormone by 5 weeks after stopping medication. No tumors appeared in any of the eight mice kept on treatment. Thyroid was then discontinued in these latter, approximately 2\textfrac{1}{2} months after the hormone therapy was stopped in the first group. Tumors became palpable in 4 weeks (Table 3) in six of six surviving mice, two dying in this interval. The short latent period for tumors to appear is in contrast to the 4\textfrac{3}{4}-month latent period seen in the seven control implanted mice not receiving thyroid (Table 3).

**DISCUSSION**

The capacity of the experimental tumor cell to lie dormant in the host after implantation was first noted by Gardner and co-workers (4), when estrogenic stimulation was not provided for a testicular tumor which required such stimulation for growth. The phenomenon of “dormancy” has since been confirmed with this type of testicular tumor (6) and with other tumors (1).

The present study adds the further finding that dependent tumor cells, in this case from thyrotropic pituitary tumors, can survive prolonged suppression of growth by the hormonal agent to which they are responsive. In the present experiments, the implanted tumor cells remained viable despite suppression of as long as 14 months by thyroid hormone. With an autonomous responsive tumor, escape from suppression occurred at 13 months after implantation of the tumor into normal host mice. Furth had previously observed such escape from suppression with a responsive thyrotropic tumor strain implanted in normal host mice. Since implants from this growth had become nonresponsive, the term “late autonomy” was coined (3).

In line with the tendency of thyrotropic tumors to escape ultimately from suppression by thyroid hormone is the progressively shorter latent period between removal of thyroid hormone suppression and appearance of tumor, the longer suppression had been maintained. This was true of both the dependent and autonomous responsive tumor strains. The decrease in latent period was most marked in the experiment with autonomous responsive tumor in which fed thyroid hormone instead of endogenous hormone was used as the suppressive agent. When treatment was subsequently discontinued 3 and 6 months after implantation, tumors became palpable within a month. Similar implants in control animals not given thyroid did not develop into palpable tumors until approximately 4 months after implantation and did not appear for 2\textfrac{1}{2} months when thyroid destruction was delayed for 2 months after the implantation was performed.

The shorter latent period with increasing duration of the suppression by thyroid hormone may simply reflect less efficient suppression by exogenous hormone compared with endogenous hormone. The importance of the available thyroid hormone level in tumor suppression has been stressed by Furth and group (3), but the amounts fed in the present experiments were more than adequate to replace and exceed daily endogenous hormone secretion. The data suggest that the tumor was growing through the period of suppression, but at a greatly slowed rate. This is also suggested by the ultimate growth of the autonomous responsive \textsuperscript{L24} implants after more than a year of suppression by the host’s own thyroid. Another likely explanation is that a change in the character of the tumor occurs with aging (3), despite, or because of, suppression by thyroid hormone. The possibility of a change in the host, either from decreased rate of secretion of thyroid hormone by the thyroid, when present, or from some systemic change, seems less likely, inasmuch as the altered behavior of the tumor was maintained in subsequent passages in at least one experiment (3). Hence, the alteration presumably is present in the tumor cell.

**REFERENCES**


Studies with Mouse Pituitary Thyrotropic Tumors. I. Survival of Implants during Prolonged Suppression by Thyroid Hormone

Sidney C. Werner and Raul Grinberg


Updated version
Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/21/4/522

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.