The Metabolism of Drugs by Hepatic Tumors*

RICHARD H. ADAMSON AND JAMES R. FOUTS

(Department of Pharmacology, College of Medicine, State University of Iowa, Iowa City, Iowa)

SUMMARY

Transformation from normal hepatic cell to tumor cell may be accompanied by a loss of ability to metabolize certain drugs by enzymes in the microsomal fraction. This change did not occur to any measurable extent during the "precancerous" stage; nor was it present in hepatic cells adjacent to the DAB-induced tumor. Only the neoplastic cell has lost this function—even severely damaged hepatic cells retained normal levels of metabolism of the drugs used in our experiments.

The loss of enzyme activity in DAB-induced tumors was probably caused by an actual deficit of enzyme protein and not by a cofactor deficiency or by the presence of inhibitors in such tumors.

Animals bearing hepatic tumors may be more "sensitive" than normal animals to some drugs. We have shown some tumor-bearing animals sleep longer after hexobarbital administration.

Possible therapeutic implications are mentioned.

This paper continues a study of the possible relation between the structure of the endoplasmic reticulum of liver and one of the functions of the microsomal fraction derived therefrom—the metabolism of drugs. Howatson and Ham (7), Porter and Bruni (19), and Novikoff (17), in studies with the electron microscope, have described deviations from normal in the endoplasmic reticulum of neoplastic hepatic tissue. The submicroscopic structure of tumor tissue may be similar to that of the embryo in some respects (7).

Conney et al. (3) have reported that certain hepatic tumors lack an enzyme system which demethylates 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB). This enzyme is localized in the microsomes of normal liver. Mascitelli-Coriandoli and Citterio (11, 12) described the decrease in activity of some microsomal reductases in N-

* This research was supported by grants from the Iowa Division of the American Cancer Society and the American Cancer Society (Grant P-247A).

This work has been presented in part at the fall meetings of the American Society for Pharmacology and Experimental Therapeutics, Miami, Florida, 1959. See: The Pharmacologist, 1(2): 54, 1959.

This material is to be submitted to the Graduate College of the State University of Iowa by Richard H. Adamson in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Received for publication December 15, 1960.

tumor (No. 5123). The Novikoff tumor was made available through the courtesy of Dr. Alan Sar-
capacity to metabolize drugs in vitro was also absent in the Novikoff tumor (Table 2). All oxidative pathways studied were absent, one of the reductive pathways was diminished (azo cleavage), and the other reductive pathway was absent (aromatic nitro-group reduction). The loss of capacity to metabolize certain drugs occurred in this "hepatoma" regardless of whether it was carried intramuscularly, intraperitoneally, or subcutaneously.

Transplantable tumor No. 5123.—This transplantable "hepatoma," which was a slowly growing tumor as contrasted with the rapidly growing Novikoff "hepatoma," also lacked the oxidative pathways (metabolisms of hexobarbital, codeine, and aminopyrine), whereas the reductive pathway investigated (reduction of p-nitrobenzoic acid) was severely depressed (Table 2).

**zy...zyme activities depended on the diet fed. It should be noted that, in our experiments, rats were-fed Laboratory Chow containing DAB. Miller et al. (14) administered 3'-Me-DAB in a "semipurified" diet. We feel the difference in effects of the azo dyes on the microsomal enzymes may be explained by the different diets in which these dyes were incorporated.

Metabolism of drugs by tissue adjacent to tumor.—The finding that "precancerous" liver metabolized drugs at a normal rate led us to study the enzyme activities in hepatic tissue surrounding the tumor. Table 4 reveals no significant difference between the metabolism of drugs by normal liver and by the area immediately adjacent to the hepatic neoplasm. Figures 2 and 3, respectively, picture a section of a tumor induced by DAB and the area

Table 1

Metabolism of Drugs in Vitro by Normal Liver and by DAB-induced Hepatic Tumors

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Normal supernatant</th>
<th>Tumor homogenate</th>
<th>Normal supernatant</th>
<th>Tumor homogenate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetanilide</td>
<td>1.1 ± 0.3</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>1.5 ± 0.6</td>
<td>11</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Codeine</td>
<td>1.7 ± 0.8</td>
<td>30</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Hexobarbital</td>
<td>5.3 ± 1.9</td>
<td>22</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Neoprontosil</td>
<td>6.3 ± 2.5</td>
<td>7</td>
<td>0.5 ± 0.2</td>
<td>5</td>
</tr>
<tr>
<td>p-Nitrobenzoic acid</td>
<td>1.5 ± 0.7</td>
<td>10</td>
<td>0.1 ± 0.1</td>
<td>5</td>
</tr>
</tbody>
</table>

* Includes all types of tumors: hepatomas, cholangiomas, and hepatobiliary tumors. Sherman rats.

Values in the table are averages ± standard deviations.

Table 2

Metabolism of Drugs in Vitro by Novikoff and No. 5123 Tumors

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Novikoff tumor homogenate</th>
<th>Novikoff tumor homogenate</th>
<th>No. 5123 tumor homogenate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal supernatant†</td>
<td>Normal supernatant†</td>
<td>Normal supernatant†</td>
</tr>
<tr>
<td>Acetanilide</td>
<td>1.4 ± 0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>1.1 ± 0.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Codeine</td>
<td>1.8 ± 0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hexobarbital</td>
<td>3.6 ± 0.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neoprontosil</td>
<td>5.6 ± 0.8</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>p-Nitrobenzoic acid</td>
<td>1.5 ± 0.7</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Aminopyrine</td>
<td>0.3 ± 0.03</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* These tumors were carried IP.
† Average values of at least four determinations (duplicates in each determination) ± standard deviation.
‡ Values represent averages of two or more experiments (duplicates in each experiment).
surrounding it. This tumor lacked the capacity to metabolize codeine and hexobarbital, whereas the enzyme activity of the tissue surrounding the tumor was the same as normal liver.

In vivo study.—The metabolism of hexobarbital in vivo by normal rats and those with DAB-induced tumors was estimated from sleeping times. Data in Table 5 indicate that animals bearing such tumors slept longer after hexobarbital administration than did controls.

TABLE 3

<table>
<thead>
<tr>
<th>Substrate</th>
<th>TIME (in months)</th>
<th>FED DIET CONTAINING 0.06 PER CENT DAB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Codeine</td>
<td>1.3±0.3</td>
<td>1.8±0.2</td>
</tr>
<tr>
<td>Hexobarbital</td>
<td>4.7±1.8</td>
<td>7.1±1.3</td>
</tr>
<tr>
<td>p-Nitrobenzoic acid</td>
<td>1.1±0.5</td>
<td>1.2±0.5</td>
</tr>
</tbody>
</table>

* Values are from determinations on the supernatant fraction and are μmoles of substrate metabolized or product formed per gm. liver used.

Figures in the table are average values ± standard deviations (seven determinations at zero time and four determinations at each time thereafter, with duplicates in each determination). Sherman rats. A Tukey test (Snedecor, p. 351 [20]) showed there was no significant difference (at P = 0.05) in the metabolism of codeine and hexobarbital between control and DAB-fed animals. However, after 3.5, 4.5, and 6 months on the DAB diet, an increase in the metabolism of p-nitrobenzoic acid occurred (significant at P = 0.05). At no other times was there a significant difference between control and DAB-fed animals for this metabolism.

TABLE 4

<table>
<thead>
<tr>
<th>Substrate</th>
<th>METABOLISM IN μMOL/LIVER USED*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal supernatant</td>
<td>No.</td>
</tr>
<tr>
<td>Codeine</td>
<td>1.7±0.5</td>
</tr>
<tr>
<td>Hexobarbital</td>
<td>4.7±1.3</td>
</tr>
<tr>
<td>p-Nitrobenzoic acid</td>
<td>1.2±0.3</td>
</tr>
</tbody>
</table>

* Values are averages ± standard deviations (duplicates in each determination). Sherman rats.

A "t" test showed no significant differences between metabolism by liver adjacent to tumor and normal liver (P > 0.4 for all pathways).

Possible Reasons for Loss of Metabolism of Drugs

The apparent lack of enzyme activity in hepatic tumors might be caused by several factors. Among these are (a) a deficiency of cofactors (reduced TPN [TPNH] or glucose-6-phosphate), (b) the presence of inhibitors of the drug-metabolizing enzymes, or (c) an absence of enzyme protein. The TPNH required for these metabolisms was provided by adding glucose-6-phosphate, TPN, magnesium sulfate, and nicotinamide in all determinations. In addition, we assayed endogenous glucose-6-phosphate dehydrogenase activity of normal and tumor tissue and found that this enzyme activity was always greater in the tumor tissue. Thus, as far as could be determined, the absence of drug-metabolizing enzyme activity in neoplasms was not related to a deficiency of the cofactor TPNH.

Inhibitors of the drug-metabolizing systems might include DAB or its metabolic products. Metabolites of DAB have been reported to inhibit a diphosphopyridine nucleotide-requiring system (8) and a rat liver transaminase (2). We studied the effects of DAB, N,N-dimethyl-p-phenylenediamine (DPD), and p-phenylenediamine (PD) on the metabolism of chlorpromazine, hexobarbital, and codeine by supernatant from normal liver. At 10⁻⁴ M final concentration, DAB, DPD, and PD gave no inhibition of any pathway. At 10⁻¹ M, DPD inhibited the three pathways about 50–60 per cent, whereas PD gave approximately a 20–25 per cent inhibition. These concentrations of DAB, DPD, and PD should be far in excess of any level possible in livers or tumors from rats fed the diets used. It would seem unlikely that lack of enzyme activity could be caused by these compounds. Certainly the Novikoff tumor and the 5129 tumor would have no such azo dye or metabolites.

Thus, we are left with the possibility that the loss of enzyme activity is related to an actual deficiency of enzyme protein.

DISCUSSION

Our results show that: (a) certain kinds of neoplastic liver tissue lack the ability to metabolize...
A variety of drugs—a function normally present in hepatic microsomes (1). This is true in several types of neoplasm—hepatoma, cholangioma, or hepatocellular carcinoma induced by feeding DAB, Novikoff transplantable tumor, or the hepatoma No. 5123. We have also studied the metabolism of hexobarbital, acetanilide, and aminopyrine in hepatic tumors induced by feeding N-fluorenylacetanilide. The results might be considered preliminary at this time. We have shown that the metabolism of hexobarbital was missing in three such tumors; also, the metabolism of aminopyrine was not present in one of these tumors. In another tumor the hydroxylation of acetanilide did not occur. (b) Precancerous liver from animals fed DAB retains normal activities of the enzymes studied even though such tissue may be rather severely damaged. (c) Areas immediately adjacent to a DAB-induced neoplasm have normal levels of the enzyme activities studied, even though such areas may not be normal histologically. (d) The lack of certain drug enzyme activities in the tumor is not caused by a lack of the co-factor TPNH, is unlikely to be caused by DAB or its metabolites in animals fed DAB, but may be related to an actual deficit in enzyme protein. (e) Animals bearing tumors induced by feeding DAB seem to be unable to metabolize hexobarbital as rapidly as do normal animals. This may be inferred from the fact that a given dose of hexobarbital results in tumor-bearing animals sleeping longer than normal animals. This may reflect replacement of hepatic cells (normal or damaged but still capable of metabolism) by tumor cells (with no metabolizing systems).

Our results with the Novikoff "hepatoma" were essentially the same as those obtained by Neubert and Hoffmeister (16), who used a DAB-induced transplanted tumor (carried subcutaneously). However, we were not satisfied to study just this type of tumor, since reports are present in the literature that such types of "hepatoma" may be primarily of bile duct origin (18). Unpublished observations from our laboratory would indicate that the drug-metabolizing enzyme systems in normal liver are present in the parenchymal cell, not the bile duct cell. Thus, tumors consisting primarily of bile duct cells would not be comparable to normal hepatic tissue and, hence, would be less desirable for our purposes of assessing a relationship between enzyme activity, cell structure, and rate of cell growth.

We have previously shown that some kinds of rapidly growing hepatic cells are absolutely or relatively deficient in the ability to metabolize some drugs. Thus, we feel that certain drug enzyme activities in the liver of the newborn, in regenerating liver (after partial hepatectomy), and in the hepatic tumor are low or absent for the same reason(s)—such rapidly growing hepatic cells "dispense" with the function of metabolism of at least some drugs.

Certain therapeutic implications of our findings might be mentioned: (a) antitumor drugs which are normally "detoxified" by the liver may be more active against the hepatic tumor (unable to "detoxify" the drug) than the normal hepatic cell. If means are available to direct the drug pre-

TABLE 5

EFFECTS OF HEXOBARBITAL ON NORMAL VS. TUMOR-BEARING RATS

<table>
<thead>
<tr>
<th>Sleeping times (minutes)</th>
<th>Normal</th>
<th>Tumor-bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 ± 2 (10)</td>
<td>61 ± 82 (6)</td>
<td></td>
</tr>
</tbody>
</table>

*Values in the table are averages ± standard deviations. Figures in parentheses are the numbers of animals in each group. Hexobarbital sodium, 100 mg/kg, was injected IP. A "t" test showed a significant difference (at $P = 0.05$) between normal and tumor-bearing animals.

†Tumor-bearing animals were killed after the experiment and their livers removed for histological examination of the various nodules present. Among this group of animals were all three types of tumor—hepatoma, cholangioma, and hepatocellular carcinoma. Tumors were excised carefully and weighed. Total grossly dissectible tumor varied from less than 0.5 gm. to 61 gm. The animal with the smallest total tumor mass slept 40 minutes; the animal with the largest mass slept 100 minutes. No animal shown to have a tumor slept less than 40 minutes.

ACKNOWLEDGMENTS

We wish to acknowledge the many examinations of histological sections which were performed by Dr. Fernando P. Aleu, Dept. of Pathology, College of Medicine, State University of Iowa, Iowa City. We also wish to thank Mrs. Donna Goodwin and Mrs. Anne Trankle of our department for technical help in the many enzyme assays.
REFERENCES

Fig. 1.—"Cirrhotic" liver with normal drug enzyme activity. Moderately severe hepatocellular damage and early cirrhosis may be seen. Hematoxylin-eosin (H. & E.), X150.

Fig. 2.—DAB-induced hepatoma next to area of Fig. 3. Hepatic-cell tumor, mitotic figures may be seen. H. & E., X150.

Fig. 3.—Area of liver adjacent to tumor of Fig. 2. This section shows diffuse, moderate hepatocellular damage. H. & E., X150.
was impossible to evaluate specific forecasts for individual specimens apparently were not reflected. There was no detectable correlation between the malignant, and benign neoplastic tissues tested. The five agents under investigation produced direct objective cytological changes. All five which responded in a similar manner to thioTEPA, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei.

The compounds in decreasing order of effectiveness were methotrexate, actinomycin D, and thioTEPA; chlorambucil, methotrexate, and phenylalanine mustard. All agents tested produced direct objective cytological changes. All three alkylating agents, thioTEPA, chlorambucil, and phenylalanine mustard, produced changes that were qualitatively similar and apparent: aneuploidy; aneuploidy; aneuploidy; aneuploidy; aneuploidy.

The effect of prior therapy seems to be more closely related to success or failure of growth treatment and subsequent response for all normal, solid tissues were handled and cultured in an identical manner, regardless of the tissue type. There was no relation between the resistance of all melanomas tested to chlorambucil, methotrexate, and phenylalanine mustard. Apparently, tissues which survive therapy and respond to any test agent individually, except in a few cases which responded in a similar manner to thioTEPA.

Whereas tumor types in general responded individually to the test agents, certain trends were supported by the consistent responses to drugs of specific tissue types. The effect of prior therapy on the severe cytotoxic changes that were observed in preparations indicated that there was no relation between migration and growth in tissue culture and drug response based on primary or metastatic lesions of the same type. This group did not include any primary and metastatic tumors from the same patient. There was no significant difference in sensitivity or resistance to any agent based on exposure to actinomycin D, chlorambucil, and thioTEPA; exposure to chlorambucil; and exposure to thioTEPA.

A comparison was made between rate and exposure to actinomycin D, chlorambucil, and thioTEPA; exposure to chlorambucil; and exposure to thioTEPA. The five agents under investigation produced direct objective cytological changes. All five which responded in a similar manner to thioTEPA, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei. The antimetabolite, methotrexate, caused pyknosis to form narrow, elongated nuclei.

The compounds in decreasing order of effectiveness were methotrexate, actinomycin D, and thioTEPA; chlorambucil, methotrexate, and phenylalanine mustard. All agents tested produced direct objective cytological changes. All three alkylating agents, thioTEPA, chlorambucil, and phenylalanine mustard, produced changes that were qualitatively similar and apparent: aneuploidy; aneuploidy; aneuploidy; aneuploidy; aneuploidy.

The effect of prior therapy seems to be more closely related to success or failure of growth treatment and subsequent response for all normal, solid tissues were handled and cultured in an identical manner, regardless of the tissue type. There was no relation between the resistance of all melanomas tested to chlorambucil, methotrexate, and phenylalanine mustard. Apparently, tissues which survive therapy and respond to any test agent individually, except in a few cases which responded in a similar manner to thioTEPA.

Whereas tumor types in general responded individually to the test agents, certain trends were supported by the consistent responses to drugs of specific tissue types. The effect of prior therapy on the severe cytotoxic changes that were observed in preparations indicated that there was no relation between migration and growth in tissue culture and drug response based on primary or metastatic lesions of the same type. This group did not include any primary and metastatic tumors from the same patient. There was no significant difference in sensitivity or resistance to any agent based on exposure to actinomycin D, chlorambucil, and thioTEPA; exposure to chlorambucil; and exposure to thioTEPA.
The Metabolism of Drugs by Hepatic Tumors

Richard H. Adamson and James R. Fouts