INDEX TO VOLUME 22
INDEX TO VOLUME 22

AUTHOR INDEX

In addition to the regular issues of Cancer Research, the following supplements were published during 1962:

Vol. 22, No. 1, Part 2, Cancer Chemotherapy Screening Data XIII, pages 1–156.
Vol. 22, No. 7, Part 2, Cancer Chemotherapy Screening Data XVI, pages 559–748.
Vol. 22, No. 8, Part 2, Cancer Chemotherapy Screening Data XVII, pages 749–918.
Vol. 22, No. 11, Part 2, Cancer Chemotherapy Screening Data XVIII, pages 919–1148.

Each of these supplements contains its own index, and a cumulative index is found in No. 11, Part 2. The articles appearing in the 1962 supplements are listed in this index by author only, and such entries are indicated by “CS” preceding the number—e.g., CS 20.

Abbott, B. J. See Leiter, J., CS 609
Abell, C. W., and Heidelberger, C. Interaction of carcinogenic hydrocarbons with tissues. VIII. Binding of tritium-labeled hydrocarbons to the soluble proteins of mouse skin, 931
—. See Giovannella, B. C., 925
Abercrombie, M., and Ambros, E. J. The surface properties of cancer cells: a review, 525
Acosta, R. See Murphy, W. H., 906
Albert, D., and Zeldman, L. Relation of glucocorticoid activity of steroids to number of metastases, 1297
Alexander, J. A. See Wheeler, G. P., 760
—. See Wheeler, G. P., 1509
Allison, J. B. See Crossley, M. L., 549
Altura, K. P. See Marshall, R. R., 802
Ambrose, E. J. See Abercrombie, M., 525
Amos, D. B. See Journey, L. J., 998
Anderson, D. G. See Kirsten, W. H., 484
Anderson, B. P., and Jackson, J. A. Azaserine resistance in a plasma-cell neoplasm without change in active transport of the inhibitor, 27
Anido, P. See Merker, P. C., 352
—. See Merker, P. C., 1163
—. See Merker, P. C., CS 9
Antopol, W., and Chrysanthem, C. Gamma globulin potentiation of Proteus lipopolysaccharide effect on Sarcoma 180, 89
Argrya, B. F. See Argyria, T. S., 73
Argrya, T. S., and Argrya, B. F. Differential response of skin epithelium to growth-promoting effects of subcutaneously transplanted tumor, 73
Armagan, V. Effect of chemotherapy on IRC 741 leukemia in Fischer rats. I. Development of attenuated and resistant sublines, 1075
Arrhenius, E., and Hultin, T. Effects of carcinogenic amines on amino acid incorporation by liver systems. I. Secondary increase in microsomal activity after aminofluorene treatment, 825
Ashford, C. See Ludovici, P. P., 788
—. See Ludovici, P. P., 797
Atchison, R. W. See Yohn, D. S., 448
Auricchio, F. See Bresciani, F., 1284
Baker, J. R. See Homburger, F., 968
Ballis, M. Spontaneous neoplasms in amphibia: a review and descriptions of six new cases, 1142
Barbieri, B. See Caldarera, C. M., 1026
Barclay, R. E., Garfinkel, E., and Phillips, M. A. Effects of 6-diazo-5-oxo-L-norleucine on the incorporation of precursors into nucleic acids, 809
Barich, D. See Barich, L. L., 53
Barich, L. L., Schwartz, J., and Barich, D. Oral griseofulvin: a cocarcinogenic agent to methylcholanthrene-induced cutaneous tumors, 53
Baroni, C. See Rappaport, H., 1067
Bauer, J. M. See Wu, C., 1299
Baumann, M. E. See Heidelberger, C., 78
Bekesi, J. G. See Macbeth, R. A. L., 244
—. See Macbeth, R. A. L., 1170
Bender, M. A. See Parsons, D. F., 738
Benton, D. A. Growth of Sarcoma 180 in adrenalectomized mice, 1220
Berenbom, M. Studies on the utilization of the carbon of p-dimethylaminobenzene for rat liver nucleic acid synthesis, 1543
Bertansky, F. D., and Lau, C. Rates of cell division of transplantable malignant rat tumors, 687
Berwick, L., and Coman, D. R. Some chemical factors in cellular adhesion and stickiness, 982
Bhuyan, K. K., Renis, H. E., and Smith, C. G. A collagen plate assay for cytotoxic agents. II. Biological studies, 1131
—. See Renis, H. E., 1126
Biesele, J. J. Experimental and therapeutic modification of mitosis, 779
Blackwood, C. E., Mateyko, G. M., and Mandl, L. Changes in proteolytic enzyme systems of rat tissues in response to heterologous growth of human ovarian tumors, 995
Blumenthal, H. T., and Rogers, J. B. Studies of guinea pig tumors. II. The induction of malignant tumors in guinea pigs by methylcholanthrene, 1155
Boediansky, O. See Fodor, F. J., 1280
Boeysd, B. See Mellgren, J., 159
Bond, S. See Kriis, J. P., 1257
Booth, L. M., Mühlbuck, O., Böckes, G., and Tangbergen, W. v.E. Further investigations on induction of mammary cancer in mice by isografts of hypophysectomized tissue, 713
Booth, B. A. See Sartorelli, A. C., 94
—. See Sartorelli, A. C., 102
Borman, A. See Hilf, R., 449
Cancer Research

Vol. 22, December 1962

1392

Bourke, A. R. See Leiter, J., CS 241
—. See Leiter, J., CS 206
—. See Leiter, J., CS 609
—. See Leiter, J., CS 919
Bowie, M. See Merker, P. C., 392
Bradner, W. T., and Sugihara, K. Actinogam: a new antitumor agent obtained from Streptomyces. II. Studies with Sarcoma 180 and in a tumor spectrum, 167
—. See Schmids, H., 163
Brand, E. A. See Hutchinson, D. J., CS 73
Bresciani, F., and Auricchio, F. Subcellular distribution of some metallic cations in the early stages of liver carcinogenesis, 2554
Bresnick, E. Feedback inhibition of aspartate transcarbamylase in liver and in hepatoma, 1246
Briggs, S. D. See Wheeler, G. P., 790
—. See Wheeler, G. P., 1390
Brobst, D. F. See Olson, C., 463
Bross, I. D. J., and Tarnowski, G. S. A new approach to differential toxicity, CS 46
—. See Tarnowski, G. S., CS 136
Brown, R. R. See Wolberg, W. H., 1113
Brummer, R. C., Holland, J. F., and Sheee, P. R. Drug effects on a target metabolic pathway and on mouse tumor growth: azauridine and decarboxylation of orotic acid-7-C14, 115
Buck, R. E. See Price, K. E., 885
Buckner, S. See Rutman, R. J., CS 559
Budini, R. See Calderara, C. M., 1026
Bullis, C. See Murphy, W. H., 906
Burgess, E. A., and Sylvén, B. Glucose, lactate, and lactic dehydrogenase activity in normal intestinal fluid and that of solid mouse tumors, 581
Burke, W. T. Changes in hepatic metabolism associated with carcinogenesis or regeneration in rat liver, 10
Busch, H., Hnilica, L. S., Chien, S.-C., Davis, J. R., and Taylor, C. W. Isolation and purification of RPS-L, a nuclear protein fraction of the Walker 256 carcinosarcoma, 687
—. See Byvooet, P., 299
—. See Muramatsu, M., 1100
—. See Starbuck, W. C., 1206
Buttarazzi, P. J. See Potter, J. F., 1202
Byvooet, P., and Busch, H. Intracellular distribution of 5-bis-(3-chloroethyl)aminouracil-8-C14 in tissues of tumor-bearing rats, 249
Calderara, C. M., Budini, R., Barbiorli, B., and Rabbi, A. The effect of ethionine on the free nucleotides in rat liver, 1026
Cantarow, A., Williams, T. L., and Paschik, K. E. Hormonal and nutritional influences on the incorporation of uracil into liver and tumor RNA in the rat, 1021
—. See Hoffman, S. A., 597
Cantore, A. See Nigam, V. N., 131
Cappuccino, J. G., Reilly, H. C., and Winston, S. Elevation of lysozyme in extracts of kidneys and spleens from tumor-bearing animals, 850
Carr, J. A. See Hays, E. F., 1819
Carruthers, C. The fatty acid composition of dermal and epidermal triglycerides and phospholipids in mouse skin during normal and abnormal growth, 294
Casto, B. C. See Yohn, D. S., 443
Chien, S.-C. See Busch, H., 887
Chirigos, M. A., Fanning, G. R., and Guroff, G. Effects of amino acids, analogs, and certain other agents in relation to tyrosine transport in Sarcoma 37 ascites cells, 1349
—. Humphreys, S. R., and Goldin, A. Effectiveness of Cytoxan against intracerebrally and subcutaneously inoculated mouse lymphoid leukemia L1210, 187
Chrysanthou, C. See Antopol, W., 89
Ciotti, C. J. See Humphreys, S. R., CS 463
Clark, S. H. See Gullino, P. M., 1081
Clarke, D. A. See Fodor, P. J., 1290
Cline, J. C. See Johnson, I. S., 617
Coe, E. L. See Icson, K. H., 182
Cohen, A. I. See Takemoto, H., 917
Coman, D. R. See Berwick, L., 982
Condit, P. T., Shneider, B. I., and Owens, A. H., Jr. Studies on the folic acid vitamias. VII. The effects of large doses of amethopterin in patients with cancer, 706
Coriell, L. L. See Marshak, R. H., 202
Costa, G., and Holland, J. F. Effects of Krebs's 11 carcinoma on the lipid metabolism of male Swiss mice, 1081
Couves, C. M. See Turner, F. W., 49
Cowett, W. V. See Hilt, R., 449
Czarnel, J. D. See Potzer, J. F., 1202
Crawford, E. See Friedklin, M., 900
Crochaw, J. B., Jr. See Marshak, R. H., 202
Crossley, M. L., Kuh, E., and Allison, J. B. Structure and carcinostatic activity of certain ethylene phosphoramides. II. Alkyl and aralkyl diethylene phosphoramides, 549
Crosswhite, L. H. See Sandberg, A. A., 748
Crowell, E. B., Jr. See Kirsten, W. H., 484
Dao, T. L. The role of ovarian hormones in initiating the induction of mammary cancer in rats by polynuclear hydrocarbons, 973
Daoust, R. The mitotic activity in rat liver during DAB carcinogenesis, 743
Davis, J. R. See Busch, H., 637
DeBias, D. A. See Hoffman, S. A., 597
de Torok, D., and Roderick, T. H. Associations between growth rate, mitotic frequency, and chromosome number in a plant tissue culture, 174
Dietrich, L. S. Effect of hydrophobic phenolic compounds on electron transport in tumor mitochondrial extracts, 1287
Dillenberg, J. See Hutchinson, D. J., CS 87
DiPaolo, J. A. Effects of oxygen concentration on carcinogenesis induced by transplacental exposure to urethan, 499
—. See Sheee, P. R. The combined carcinogenic effect of cigarette smoke condensate and urethan, 1058
Dmochowski, L. See Sykes, J. A., 21
Dodson, A. S. See Wheeler, G. P., 769
—. See Wheeler, G. P., 1909
Donnelly, A. J. See Shatalon, J. B., 1722
Dunn, T. B. The value of animal research, and the men who do this research, 898
Eckardt, R. E. Environmental carcinogenesis: guest editorial, 395
Eidinoff, M. L. See Hampton, E. G. 1061
—. See Rich, M. A., 3
Elliott, A. See Pace, D. M., 107
Elia, D. B., and Scholesfield, P. G. Studies on fatty acid oxidation. IX. The effects of uncoupling agents on the oxidation of fatty acids by transplantable tumors, 305
Emmett, P. Long-chain fatty acids in rat hepatoas homogenates and the properties of hepatoma mitochondria, 38
—. See Mizrahi, I. J., S89
Humphreys, S. R., Venditti, J. M., Ciofetti, C. J., Kline, I., Goldin, A., and Kaplan, N. O. Toxicity and antileukemic effectiveness of pyrimidine derivatives and 1,3,4-thiadiazole derivatives in mice. Relationship to nicotinamide antagonism, CS 488
—. See Chirigos, M. A., 187
—. See Friedkin, M., 600
Hurley, J. See Merker, P. C., 646
Hutchinson, D. J., Robinson, D. L., Martin, D., Ittensohn, O. L., and Dillenberg, J. Effects of selected cancer chemotherapeutic drugs on the survival times of mice with L-1210 leukemia: relative responses of antimetabolite-resistant strains, CS 57
—. Zucker, W. V., and Brand, E. A. Effects of selected cancer chemotherapeutic drugs on the growth of Streptococcus faecalis: relative responses of antimetabolite-resistant strains, CS 78
Ise, K. H., Coe, E. L., and McKee, R. W. A comparison of the respiratory inhibitions induced by p-glucose and 2-deoxy-p-glucose in Ehrlich ascites carcinoma cells, 182
Irving, C. C. N-Hydroxylation of 2-acetylaminofluorene in the rabbit, 867
Ishihara, T., Moore, G. E., and Sandberg, A. A. The in vitro chromosome constitution of cells from human tumors, 375
—. See Hakala, M. T., 987
—. See Sandberg, A. A., 748
Ittensohn, O. L. See Hutchinson, D. J., CS 57
Jacobs, C. F. See Krulwich, T. A., 392
Jacques, A. J. Tissue culture screening, CS 81
—. and Sherman, J. H. Enzymatic degradation of azaserine, 56
—. See Anderson, E. P., 27
Jamison, C. E., Huff, J. W., and Gordon, M. P. Metabolic studies on 6-methylaminopurine, 1532
Jenkins, A. See Park, R. W., 469
Jenkins, V. K. See Parsons, D. F., 728
Johnson, H. G. See Renis, H. E., 1128
Johnson, R. A. See Richardson, P. J., and Orine, J. C. Comparative studies with chemotherapeutic agents in biologically diverse in vitro cell systems, 617
Johnson, C. L. See Hill, R., 449
Johnson, R. R. See Parsons, D. F., 728
Jouraey, I. J., and Ams, D. B. An electron microscope study of histiocye response to ascites tumor homografts, 968
Kaijwara, K. See Mueller, G. C., 1084
Kahal, J. See Gallily, R., 1088
Kaplan, C. O. See Humphreys, S. R., CS 488
Karnofsky, D. A., and Lecon, C. R. Survey of Cancer Chemotherapy Service Center compounds for teratogenic effect in the chick embryo, CS 84
Kimball, A. P., and LePage, G. A. The metabolism of 8-buty1-8-thioquanine in normal and neoplastic tissues, 1901
Kizer, D. E. Relationships between hepatocarcinogenesis and the precancerous loss of s-hydroxyprotoplan decarboxylase activity, 196
Klein, E. See Klein, G., 955
—. See Skettenmark, B., 947
Klein, G., Sjögren, H. O., and Klein, E. Demonstration of host resistance against isoinplantation of lymphomas induced by the Gross agent, 955
—. See Reichard, P., 235
Klenow, H. See Frederiksen, S., 125
Kline, I. See Goldin, A., CS 157
—. See Goldin, A., CS 748
—. See Humphreys, S. R., CS 488
Kodama, M. Effect of hydrocortisone on Ehrlich ascites tumor, 1212
Kojima, K. See Hirono, I., 292
Koprowska, I. See Siegler, R., 1275
—. See Siegler, R., 1275
Koulisch, S., and Lesler, M. A. Cytological aspects of normal and tumorous liver, 1188
Kris, J. P., and Révézé, L. The distribution and fate of bromodeoxyuridine and bromodeoxyuridine in the mouse and rat, 254
—. Tung, L. and Bone, S. The distribution and fate of iododeoxyuridine in the mouse and rat, 1257
Kuh, E. See Crossley, M. L., 549
Kummerow, F. A. See Sugai, M., 510
Kury, L. See Maddock, C. L., 491
Lacun, C. R. See Karnofsky, D. A., CS 84
Landau, B. J. See Murphy, W. H., 906
Lau, C. See Bertalanffy, F. D., 627
Lavie, D. See Gallily, R., 1088
Lawrence, W. C. See Marshak, R. R., 202
Lee, T. C., Salmon, R. J., Mosser, D. G., and Loken, M. K. The uptake of P38 by liver phosphotidyls of Ehrlich ascites tumor-bearing mice, 1046
Leighton, J. See Mahoney, M. J., 394
Lein, J. See Schmitz, H., 163
—. Schepartz, S. A., and Wodinsky, I. Screening data from the Cancer Chemotherapy National Service Center Screening Laboratories. VII, CS 821
—. Schepartz, S. A., and —. Screening data from the Cancer Chemotherapy National Service Center Screening Laboratories. VIII, CS 863
—. Macdonald, M. M., and Schepartz, S. A. Screening data from the Cancer Chemotherapy National Service Center Screening Laboratories. X. Cell culture cytotoxicity tests, CS 887
Leung, J. L. See Wattenberg, L. W., 1120
LePage, G. A. See Kimbell, A. P., 1301
Lesler, M. A. See Koulisch, S., 1188
Levine, M. C. See Scheinberg, L. C., 87
Ley, B. M. Experimental induction of tumor-like lesions of the notochord of fish, 441
Lewis, F. S. See Rutman, R. J., CS 559
Libet, B., and Siegel, B. V. Response of a virus-induced leukemia in mice to high oxygen tension, 787
Liebelt, A. G., and Liebelt, R. A. Influence of gonadal hormones and cortisone on spontaneous and methylcholanthrene-induced leukemia in inbred mice, 1180
Liebelt, R. A. See Liebelt, A. G., 1180
Linder, O. E. A. Survival of skin homografts in methylcholanthrene-treated mice and mice with spontaneous mammary cancers, 390
Index to Volume 22

Lewellyn, F. See Rutman, R. J., CS 559
Loken, M. K. See Lee, T. C., 1046
Lotaikar, P. See Enomoto, M., 1386
Loustalot, P. See Stabili, W., 84
Ludovici, P. P., Ashford, C., and Miller, N. F. Studies on chemically induced and "spontaneous" alterations of morphology and growth potential in human cell culture, 788
——. — —. Studies on the chemicals required to induce alterations of morphology and growth potential in human cell culture, 797
Lundke, A. J. See Olson, C., 463

Macheth, R. A. L., and Bekesi, J. G. Oxygen consumption and anaerobic glycolysis of human malignant and normal tissue, 244
——. — —. Plasma glycoproteins in various disease states including carcinoma, 1170
MacDonald, H. L. See Ngam, Y. N., 181
Macdonald, M. M. See Leiter, J., CS 887
——. See Leiter, J., CS 919
Madden, R. E., and Malmgren, R. A. Quantitative studies on circulating cancer cells in the mouse, 62
Maddock, C. L., Kury, L., and Riley, E. A transplantable metastasizing rhabdomyosarcoma (mesenchymoma) in the W/Fu rat, 291
Magnusson, P.-H. See Reichard, P., 235
——. — —. See Skold, O., 1228
Mahoney, M. J., and Leighton, J. The inflammatory response to a foreign body within transplantable tumors, 394
Malmgren, R. A. See Madden, R. E., 62
Maltoni, C. See Tannenbaum, A., 1105
——. See Tannenbaum, A., 1582
Mandel, P. See Revel, M., 456
Mandi, I. See Blackwood, C. E., 995
Margreth, A. See Miller, E. C., 1092
Martin, A. P. See Sauer, L. A., 682
Martin, D. See Hutchison, D. J., CS 57
Mateyko, G. M. See Blackwood, C. E., 995
McKee, R. W. See Iben, K. H., 182
Mead, J. A. R. See Schrecker, A. W., 15
Mellgren, J., Boerdyd, B., and Hageman, M. Growth potentials of precancer of the cervix uteri in vitro and in cortisone-treated hamsters, 139
——. See Norrby, K., 147
Marker, H. C., Anido, P., Sarino, J., and Woolley, G. W. A study of human epidermoid carcinoma (H.Ep. #3) growing in conditioned Swiss mice. III. Chemotherapy with selected chemicals and observations on diet, food intake and drug toxicities, CS 9
——. Bowie, M., and Anido, P. The newborn Swiss mouse as a host for a human epidermoid carcinoma (H.Ep. #3). Transplantation and chemotherapy data, 392
——. — —. Hurley, J. A study of human epidermoid carcinoma (H.Ep. #3) growing in cortisone-conditioned Swiss mice. IV. X-ray diagnostic procedures, 646
——. — —. Reyes, C., and Anido, P. A mitomycin C-resistant Jansen rat sarcoma: isolation and transplantation studies, 1183
Messier, B., and Purth, J. A reversibly responsive variant of a thymotropic tumor with gonadotropin activity, 1004
Midgley, A. R., Jr. See Pierce, G. B., Jr., 563
Mihich, E. Host defense mechanisms in the regression of Sarcoma 180 in pyridoxine-deficient mice, 218
——. Simpson, C. L., and Mulhern, A. I. Pharmacology of methylglyoxal-bis(guanylylhydrozone) (CH3-G). I. Toxic and pathologic effects, 906
Miller, E. C., Fletcher, T. L., Magreth, A., and Miller, J. A. The carcinogenicity of derivatives of fluorene and biphenyl: fluoro derivatives as probes for active sites in 2-acetylaminofluorene, 1002
——. See Enomoto, M., 1386
——. See Miller, J. A., 1881
——. See Enomoto, M., 1386
——. See Miller, E. C., 1092
Miller, N. F. See Ludovici, P. P., 788
——. See Ludovici, P. P., 797
Mitchell, D. S. See Tannenbaum, A., 1382
Miyaji, T. See Mori, M., 1383
Mirnaki, L. J., and Emmot, P. The effect of cysteine on the metabolic changes produced by two carcinogenic N-nitrosodialkylamines in rat liver, 399
Montgomery, J. A., Schabel, F. M., and Skipper, H. E. Experimental evaluation of potential anticaner agents. IX. The ribonucleosides and ribonucleotides of two purine antagonists, 504
——. See Kelley, G. G., 329
Moore, G. E. See Ishihara, T., 575
Moran, M. B., and Woolley, G. W. Chemotherapy of a transplantable mammary tumor in strain C129 mice, CS 57
Mori, M., Miyaji, T., Murata, I., and Nagasuna, H. Histochemical observations on enzymatic processes of experimental carcinogenesis in hamster cheek pouch, 1923
Morris, H. P. See Rechigl, M., Jr., 874
——. See Wheeler, G. P., 789
Mossor, D. G. See Lee, T. C., 1046
——. See Stubblefield, E., 1091
Mühlbeck, O. See Boot, L. M., 713
Mukherjee, K. L., and Heidelberger, C. Studies on fluorinated pyrimidines. XV. Inhibition of the incorporation of formate-C14 into DNA thymine of Ehrlich ascites carcinoma cells by 5-fluoro-2-deoxyuridine-5-monophosphate and related compounds, 815
Mulhern, A. I. See Mihich, E., 968
Muramatsu, M., and Busch, H. Effects of thiocetamide on metabolism of proteins of normal and regenerating liver, 1100
Murata, I. See Mori, M., 1383
Muravy, W. H., Bulkis, C., Landau, B. J., and Asota, R. Effects of heterologous sera on the modal distribution of variants in four strains of human epithelial cells, 906
Nadler, S. B. See Hansen, H. J., 761
Nagashima, H. See Mori, M., 1923
Nelson, E. D. See Parsons, D. F., 728
Nettleship, A. Serum globulins and bronchogenic carcinoma, 1068
Nichol, C. A. See Rosen, F., 495
Nicholl, W. W. See Marschak, R. R., 209
Nigrum, V. W., MacDonald, H. L., and Cantero, A. Limiting factors for glycogen storage. I. Limiting Enzymes, 181
Nilsson, O. Electron microscopy of the human endometrial carcinomas, 492
Studies related to the mechanisms of action of cytotoxic alkylating agents: a review, 651

Alexander, J. A., Dodson, A. S., and Briggs, S. D. Searches for exploitable biochemical differences between normal and cancer cells. X. Catabolism of purines by regressing tumors, 1509

Alexander, J. A., Dodson, A. S., and Morris, H. P. Searches for exploitable biochemical differences between normal and cancer cells. IX. Anabolism and catabolism of purines by Hepatomas 5122 and H-35, 769

See Kelley, G. G., 329

Will, J. J. See Schreiner, A. W., 757

Williams, A. M. Nucleic acid metabolism in leukemic human leukocytes. I. In vitro incorporation by leukocytes from chronic granulocytic leukemia, 814

Williams, T. L. See Cantarow, A., 1921

Winkelman, J. The distribution of tetraphenylporphinesulphonate in the tumor-bearing rat, 589

Winston, S. See Cappuccino, J. G., 850

Witting, L. A. See Sugai, M., 510

Wodinsky, I. See Leiter, J., CS 221

See Leiter, J., CS 283

See Leiter, J., CS 919

Wolberg, W. H., and Brown, R. R. Autoradiographic studies of in vitro incorporation of uridine and thymidine by human tumor tissue, 1113

Wong, T.-W., Warner, N. E., and Yang, N. C. Acute necrosis of adrenal cortex and corpora lutea induced by 7,12-dimethylbenzanthracene and its implication in carcinogenesis, 1053

Woolley, G. W. Chemotherapy of transplantable human tumors in the hamster, CS 54

See Merker, P. C., CS 9

See Moran, M. R., CS 87

Wright, J. C. See Walker, D. G., 1267

Wu, C., and Bauer, J. M. Catabolism of xanthine and uracil in tumor-bearing rats, 1239

Yaffe, D. The distribution and in vitro propagation of an agent causing high plasma lactic dehydrogenase activity, 575

Yang, N. C. See Wong, T.-W., 1053

Yohn, D. S., Hammon, W. McD., Atchison, R. W., and Casto, B. C. Serial heterotransplantation of human adenocarcinoma #1 in the cheek pouch of unconditioned adult Syrian hamsters, 448

Yokoro, K. See Takemoto, H., 917

Zeidman, I. The fate of circulating tumor cells. II. A mechanism of cortisone action in increasing metastases, 501

See Albert, D., 1279

Zucker, W. V. See Hutchison, D. J., CS 73
SUBJECT INDEX

AAF. See 2-Acetylaminofluorene.
Acetone, effect on established cell lines cultivated in vitro. Pace and Elliott, 107

2-Acetylaminobiphenyl, comparative carcinogenicity of derivatives of. Miller, Fletcher, Margreth, and Miller, 1098

2-Acetylamino-9-Ci-fluorophenylimino) 2-Acetylthiofluorene, S-Acetyl-2-fluorenethiol.

Acid derivatives Miller, Lotlikar, Fletcher, and Miller, 1986

Actinogam, cells. Coman, rivatives Miller, Lotlikar, Fletcher, and Miller, 1002

Adenine, alkyl derivatives of, effects on growth of H.Ep #1 cells. Kelley, Wheeler, and Montgomery, 329

Adenine-8-C14, anabolism and catabolism by minced rat tissues. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

Adenocarcinoma 755, mitochondrial extracts of, effect of phenolic compounds on electron transport in. Dietrich, 1927

---, mouse, effect of actinogam on, in vivo. Bradner and Sugiura, 167

---, mouse, inflammatory response to foreign body within, Mahoney and Leighton, 354

---, purine antagonists tested against, in mice. Montgomery, Schabel, and Skipper, 504

Adenocarcinoma E 0771, mammary, mouse, effect of actinogam on, in vivo. Bradner and Sugiura, 167

Adenomas, pulmonary, induced by transplacental exposure to urethan, in mice. DiPaolo, 286

---, pulmonary, in mice, electron microscopy of. Svoboda, 1197

Adenosine triphosphate, hydrolysis of, by Ehrlich ascites tumor cells. Wallach and Ullrey, 226

Adhesion, cellular, chemical factors in. Berwick and Coman, 992

Adrenal, nucleic acids of, effect of Sarcoma 180 and stressing agents on. Hilf, Cowell, Johnson, and Borman, 449

Adrenal cortex, necrosis of, induced by 7,12-dimethylbenzanthracene. Wong, Warner, and Yang, 1058

Adrenalactectomy, and growth of Sarcoma 180 in mice. Benton, 1220

Adrenotropic activity, of mamma-momatotropic tumors in rats and mice. Takemoto, Yokoro, Purth, and Cohen, 917

Alazoprostin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

Albumin, serum, catabolism of, added by mitochondrial fraction from Novikoff hepatoma. Penn, 368

---, uptake of hydroxymethylated, in rat tissues. Starbuck and Busch, 1206

Aldehyde, activity in Sarcoma 180 in mice treated with 6-mercaptopurine. Fodor, Clarke, and Bodansky, 1280

Algae, nonfilamentous green, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Alkaline phosphatase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1323

---, effect on cellular adhesion and stickiness. Berwick and Coman, 982

---, uptake of hydroxymethylated, in rat tissues. Starbuck and Busch, 1206

Anido, anticancer agent from Streptomyces, effect on Sarcoma 180 and tumor spectrum. Bradner and Sugura, 167

---, antitumor effect from Streptomyces, properties of. Schmitt, Bradner, Gourevitch, Heinemann, Price, Lein, and Hooper, 163

---, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Anticancer, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Anticancer, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Anticancer D, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

---, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1139

---, effect against transplants of H.Ep #1. Merker and Hurley, 646

---, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

---, in treatment of trophoblastic disease in women. Ross, Stolbach, and Hertz, 1015

---, tested on H.Ep #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 352

Actinomycin F or Z, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Actinomycin P2, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

---, N-hydroxylation of, in the rabbit. Irving, 867

---, urinary metabolites of, in rhesus monkey. Enomoto, Lotlikar, and Miller, 836

2-Acetylthiofluorene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002

2-Acetylamino-9-(c-fuorophenylimino) fluororene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002

Acetyllothiofluorene, urinary metabolites of, in rhesus monkey. Enomoto, Lotlikar, and Miller, 836

N-Acetyl-neuraminic acid, in plasma glycoproteins in human diseases. Macbeth and Bekesi, 1170

2-Acetylothiofluorene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002

Achromycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Acid phosphatase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1933

---, effect on cellular adhesion and stickiness. Berwick and Coman, 992

ACTH, added to nutrient medium, effect on human sarcomas in tissue culture. Spitz, 914

Adhesion, action of human sarcomas in vitro. Schubert and Becker, 1910

---, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

---, tested on H.Ep #5 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 352

Actinomycin sulfate, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

---, tested on H.Ep #8 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 352

Actinomycin, antitumor agent from Streptomyces, effect on Sarcoma 180 and tumor spectrum. Bradner and Sugura, 167

---, antitumor agent from Streptomyces, properties of. Schmitt, Bradner, Gourevitch, Heinemann, Price, Lein, and Hooper, 163

---, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Anticancer, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Anticancer in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Anticancer D, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

---, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1139

---, effect against transplants of H.Ep #1. Merker and Hurley, 646

---, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131
Alkyl diethylenephosphoramide, structure and carcinostatic activity of. Crossley, Kuh, and Allison, 549

N-Alkyl-N-nitro compounds, mechanism of action as cytotoxic alkylating agent, review. Wheeler, 651

A-melanoma 3, hamster, electron microscopy of. Stäubli and Loustalot, 84

Amethopterin. See Methotrexate.

Amino acid analogs, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1349

Amino acids, catabolism of, in rat liver, and during carcinogenesis or regeneration. Burke, 10

——, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1349

——, incorporation of, effects of carcinogenic amines on microsomal activity. Arrenhuis and Hultin, 823

——, ten essential, required to induce alterations in human cell culture. Ludovic, Ashford, and Miller, 797

Aminofluorene, increase in rat liver microsomal activity after treatment with. Arrenhuis and Hultin, 823

——, urinary metabolites of, in rhesus monkey. Enomoto, Lotlikar, Miller, and Miller, 1386

2-Amino-6-(1′-methyl-4′-nitro-5′-imidazolyl)-thiopurine, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 852

2-Aminonaphthalene, urinary metabolites of, in rhesus monkey. Enomoto, Lotlikar, Miller, and Miller, 1386

6-Aminonicotinamide, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Aminepeptidase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1923

——, increased in tumor-bearing animals. Blackwood, Matyko, and Mandl, 998

β-Aminopropionitrile, in induction of lesions of notochord in fish. Levy, 441

Aminopterin, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

——, with hadacacidin, effect on E. coli. Shigeura and Gordon, 1856

Aminouracil mustard. See 5-Bis(2-chloroethyl)aminouracil-2-C4.

Amphibin, spontaneous neoplasms in. Balls, 1142

Amphotericin B, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Animal research, value of, presidential address. Dunn, 898

Anthrathrene, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 951

——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 953

Antibiotics. See also specific antibiotics, such as Mitomycin C.

——, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1196

——, effect of mitomycin C on development of sublines of leukemia in rat. Armanah, 1075

——, effects on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

——, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

——, mitomycin C-resistant Jensen rat sarcoma. Merker, Reyes, and Ando, 1105

——, required to induce alterations in human cell culture. Landi, Ashford, and Miller, 797

——, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Antibodies, fluorescent, in cancer research, review. Glück, 905

——, to 1,2-naphthoquinone. Olldoff and Rose, 889

——, to polynoma virus, in rats given injections of virus. Kirsten, Anderson, Platz, and Crowell, 494

Antifolic agents, comparative effects of Ehrlich carcinoma sublines. Saritorelli and Booth, 94

Antimetabolite. See also specific names, such as Amethopterin.

——, effect of amethopterin on development of sublines of leukemia in rat. Armanah, 1075

Antimycin A, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Antitumor agents. See also Chemotherapy.

——, actinomycin, obtained from Streptomyces, properties of. Schmitz, Bradner, Gourveritch, Heinemann, Price, Lein, and Hooper, 163

——, effects on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Aralky diethylenephosphoramide, structure and carcinostatic activity of. Crossley, Kuh, and Allison, 549

Ascites hepatoma AH 13, electron microscopy of, and resistant subline. Hirono and Kohls, 892

Ascites tumors. See also specific names, e.g., Ehrlich, Krebs.

——, oxidative phosphorylation in mitochondria of. Sauer, Martin, and Stotz, 892

——, transplantable, in mouse, host responses to. Siegler and Kopolwska, 1725

——, transplatable, in mouse, mechanism of formation. Siegler and Kopolwska, 1725

——, comparative electron microscopy of, and resistant sublines. Hirono and Kojima, 892

——, homografts, histiocye response to, electron microscopy. Journey and Amos, 995

Asparagine transcarbamylase, in liver and hepatoma, feedback inhibition of. Bresnick, 1406

Atomic radiation, comments on report of United Nations Scientific Committee on effects of. Upton, 1139

ATPase, activity in Sarcoma 180 in mice treated with 6-mercapto purine. Fodor, Clarke, and Bodansky, 1280

Aureomycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Autoradiography, of in vitro incorporation of uridine and thymidine by human tumor tissue. Wolberg and Brown, 1113

——, with thymidine-3H, in regenerating rat liver. Grisham, 942

Auyamycin A, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

β-Azaguanine, effect on growth of H.Ep. #1 and chick embryo fibroblast cells. Rich, Peres, and Eddinoff, 3

——, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

——, ribonucleoside and ribonucleotide of, chemotherapeutic effectiveness of. Montgomery, Schabel, and Skipper, 504

——, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

——, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Ando, 852

β-Azaguanosine, effect on growth of H.Ep. #1 and chick embryo fibroblast cells. Rich, Peres, and Eddinoff, 3

Azaserine, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

——, enzymatic degradation of. Jacques and Sherman, 56

——, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

——, metabolism of 9-hutyl-8-thioguanine in mouse tissues after treatment with. Kimball and LePage, 1301

——, resistance in plasma-cell neoplasms. Anderson and Jacques, 27
Carcinogenic amines, effects of aminofluorene on liver microsomes. Arbenius and Hultin, 823

Carcinogenic effects, of cigarette smoke condensate and urethan. Di Paolo and Sheehe, 1058
 —, of N-nitrosodialkylamines, in rat liver, effect of cysteine on. Mizrahi and Emmelot, 839

Carcinogenic hydrocarbons, tritiated, binding to soluble skin proteins, mouse. Abell and Heidelberger, 921
 —, tritiated, preparation and purification. Giovanella, Abell, and Heidelberger, 925

Carcinogenicity, effect of heated fat on, of 2-acetylaminofluorene. Sugii, Witting, Tsuchiyama, and Kummerow, 920
 —, multipotential, of urethan in rat. Tannenbaum, Vessel-inovitch, Maltoni, and Mitchell, 1082
 —, of 2-acetylaminofluorene and derivatives. Miller, Fletcher, Margreth, and Miller, 1092
 —, of N-hydroxy-2-acetylaminofluorene and cupric chelate in rat. Miller, Enomoto, and Miller, 1121

Carcinoma. See also Mammary carcinoma.
 —, bronchogenic, and serum globulins. Nettleship, 996
 —, mammary, solid, mouse, glucose, lactate, and lactic dehydrogenase activity in. Burgess and Sylven, 581

Carcinoma 63, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850

Carcinoma 755. See Adenocarcinoma 755.

Carcinoma 1025, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850
 —, mouse, effect of actinogen on, in vivo. Bradner and Sugiura, 167

Carcinosarcoma 236 Walker. See Walker 236 carcinosarcoma.

Carcinostatic activity, of ethylene phosphoramides. Crossley, Kuh, and Allison, 549

Carzinophilin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuayun, Renis, and Smith, 1131

Carzinostatin, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Castation, rats, effect on mammary cancer induction by polynuclear hydrocarbons. Dao, 973

Catalase, activity in tissues of hepatoma-bearing animals. Rebeigil, Price, and Morris, 574

Cathepsin B, increased in tumor-bearing animals. Blackwood, Matseyko, and Mandl, 993

Cattle, induced immunity of skin, vagina, and urinary bladder to bovine papillomatosis. Olson, Luedke, and Brobat, 465
 —, lymphosarcomas of, clinical aspects and herd studies. Marshall, Correll, Lawrence, Croshaw, Schryver, Altera, and Nichols, 202

Cell division. See Mitosis.

Cell fractionation, and distribution of aminouracil mustard in tissues of tumor-bearing rats. Byvoet and Busch, 549
 —, catabolism of serum albumin by mitochondrial fraction from Novikoff hepatoma. Penn, 395
 —, distribution of metallic cations in liver carcinogenesis. Breciani and Aurichio, 1284
 —, effect of phenolic compounds on tumor mitochondrial extracts. Dietrich, 1287
 —, increase in liver microsomal activity after aminofluorene treatment. Arbenius and Hultin, 823
 —, of Ehrlich ascites tumor cells, distribution of ATPase and ADPase activity in. Wallach and Ulrey, 228
 —, of rat liver, and effect of cysteine on metabolic changes produced by N-nitrosodialkylamines. Mizrahi and Emmelot, 839
 —, oxidative phosphorylation in ascites tumor mitochondria. Sauer, Martin, and Stota, 682
 —, properties of rat hepatoma mitochondria, Emmelot, 88

—, protein metabolism in rat liver fractions, effect of thioacetamide. Muramatsu and Busch, 1100

Cell populations, theories of changing, sensitive and resistant leukemic cells. Friedkin and Goldin, 607

Cell proliferation, in regenerating rat liver, DNA synthesis. Graham, 845

Cells, adhesion and stickiness, chemical factors in. Berwick and Coman, 982
 —, cancer, surface properties of, review. Abercrombie and Ambrose, 525
 —, circulating cancer, quantitative studies in the mouse. Madden and Malmgren, 62
 —, mammalian, isolation and long-term culture of diploid lines. Ferguson and Wasnabrough, 556

Cervical squamous carcinoma D08, mouse, inflammatory response to foreign body within. Mahoney and Leighton, 584

Cervix uteri, growth potentials of precancer of, in vitro and in cortisone-treated hamsters. Melgren, Boeyrd, and Hagman, 139

Chang liver cells, modal distribution of cell variants, effects of heterologous sera. Murphy, Bullis, Landau, and Acosta, 906

Chemotherapy. See also Supplements on Cancer Chemotherapy Screening Data XIII, XIV, XV, XVI, XVII, and XVIII.
 —, activity of hadacillin as antitumor agent. Shigehara and Gordon, 1856
 —, antibiotic effects on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885
 —, antitumor effect of curcubitacin. Gallily, Shohat, Kalish, Gitter, and Lavie, 1029
 —, asauridine effect on mouse ascites tumors. Brueummer, Holland, and Sheebe, 113
 —, chemotherapy, enhanced differential toxicity and colateral sensitivity, prediction of. Paigen, 1290
 —, comparative studies in diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
 —, effect of actinogen on tumor spectrum in rodents. Bradner and Sugiura, 167
 —, effect of Cytoxan on proteins of L1210 leukemia. Strosier and Nyhan, 1393
 —, effect of 6-diazo-5-oxo-L-norleucine on precursor incorporation into nucleic acids. Barclay, Garfinkel, and Phillips, 809
 —, effect of large doses of amethopterin in cancer patients. Condit, Shinder, and Owens, 706
 —, effect on leukemia sublines in rats. Armaghan, 1075
 —, experimental, in chemically induced mouse tumors. Homburger, Russefield, Baker, and Tregear, 398
 —, inhibition of DNA thymine synthesis in Ehrlich ascites cells by fluorinated pyrimidines. Mukherjee and Heidelberger, 815
 —, mechanisms of action of cytotoxic alkylating agents, review. Wheeler, 651
 —, metabolism of 6-butyly-6-thioguanine in mouse tissues with and without pretreatment with asasenate. Kimball and LePage, 1901
 —, of HeP 38 in newborn Swiss mice. Merker, Bowie, and Ando, 358
 —, of leukemia L1210 with Cytoxan subcutaneously and intraperitoneally. Chirigos, Humphreys, and Goldin, 187
 —, of tumor-bearing hamsters, with cyclophosphamide in vivo. Wheeler, Alexander, Dodson, and Briggs, 1309
Cigarette smoke condensate, and urethan, carcinogenic effect of. DiPaolo and Scheele, 1058
Cobalt compounds, carcinogenicity in rats and mice. Gilman, 158
Cobalt oxide, as carcinogen in rats and mice. Gilman and Buckerbauer, 152
Carcinogenic agent, oral griseofulvin effect on methylcholanthrene-induced cutaneous mouse tumors. Barich, Schwarz, and Barich, 43
Coenzymes, folate, role in cellular division, review. O'Brien, 267
Cotransfer requirement, for albumin catabolism, by tumor mitochondrial fraction. Penn, 388
Colchicine, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
—, method for studying mitotic rates in malignant rat tumors. Bertaalansky and Lau, 627
Collagen, content in transplanted tumors in rodents. Gullino, Greenam, and Clark, 1051
—, plate assay, biological studies on cytotoxic agents. Bhuyan, Renis, and Smith, 1131
—, plate assay, for cytotoxic agents. Renis, Johnson, and Bhuyan, 1126
Comments, on report of United Nations Scientific Committee on effects of atomic radiation. Upton, 1139

Copper compounds, lack of carcinogenicity in rats and mice. Gilman, 158

Corpora lutea, necrosis of, induced by 7,12-dimethylbenzanthracene. Wong, Warner, and Yang, 1033

Cortisone, action in increasing metastases, in rabbits. Zeidman, 501
—, effect on spontaneous and methylcholanthrene-induced leukemia in mice. Liebelt and Liebelt, 1180
—, effect on uracil incorporation into liver and tumor RNA, rat. Cantarow, Williams, and Paschik, 1021
—, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
—, relation to metastases, in mouse. Albert and Zeidman, 1297

Crab sarcoma, hamster, effect of actinogen on, in vitro. Bradner and Sugiura, 167
—, l-lysozyme in kidney and spleen of hamsters bearing. Cappuccino, Reilly, and Winston, 869

Crotalidae fasciata, susceptibility to antitumor antibiotics. Price, Buck, Schlein, and Siminoff, 885

Cucurbitacins, antitumor effect of, on Ehrlich ascites. Gallily, Shohat, Kalish, Gitter, and Lavie, 1058

Culture. See Tissue culture.

Cupric acetate, ineffective in inducing rat tumors upon inoculation. Miller, Enomoto, and Miller, 1891

Cupric chelate, of N-hydroxy-2-acetylaminofluorene, carcinogenicity in rat. Miller, Enomoto, and Miller, 1891

Cupric oxide, ineffective in inducing rat tumors upon inoculation. Miller, Enomoto, and Miller, 1891

Cydoheximide, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1151
—, inhibitory in broth dilution assay on KB cells. Bhuyan, Renis, and Smith, 1151

Cyclophosphamide, effect on development of sublines of leukemia, rat. Armaghian, 1075
—, effects on mouse lymphoid leukemia L1210 subcutaneously and intracerebrally. Chirigos, Humphreys, and Goldin, 187
—, effect on proteins of L1210 leukemia. Strozier and Nyhan, 1932
—, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1940
—, tested on H.Ep. #8 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 592
—, treatment of plasmacytomas growing in hamsters with, in vivo. Wheeler, Alexander, Dadoson, and Briggs, 1809

Cysteine, effect on metabolic changes in rat liver produced by carcinogenic N-nitrosodialkylamines. Mirzahi and Emmelot, 839

Cytotoxic chemical studies, on changes in chick embryo cells by Rous virus. Hampton and Eidinoff, 1061

Cytotoxicchrome oxidase, effect on hydrophobic phenolic compounds on. Dietrich, 1947

Cytology, in normal and tumors rat liver, DNA in. Kouliah and Lesser, 1188
—, of primary explants of human neoplasms, effect on Vincaeuloblastie on. Walker and Wright, 1267

Cytotoxic agents, alkylating, mechanisms of action, review. Wheeler, 851
—, collagen plate assay for. Renis, Johnson, and Bhuyan, 1126

Cytotoxic tests, against Gross lymphoma. Slettenmark and Klein, 947

Cytosan. See Cyclophosphamide.

DAB. See p-Dimethylaminobenzoic acid.
Defense mechanisms, host in regression of Sarcoma 180 in pyridoxine-deficient mice. Michih, 918

Dehydrogenases, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1925

2'-Deoxyadenosine-5'-monophosphate, inhibition of aspartate transcarbamylase by. Bresnick, 1926

2'-Deoxyadenosine-5'-monophosphate, inhibition of aspartate transcarbamylase by. Bresnick, 1926

Deoxyadenosine 1-N-oxide, effect on nucleic acid synthesis in ascites tumor cells in vitro. Fredericksen and Klenow, 125

Deoxyribonuclease, relation to metastases, in mouse. Albert and Zeidman, 1297

2-Deoxy-D-glucose, respiratory inhibition induced in Ehrlich ascites tumor cells by. Iben, Coe, and McKee, 182

2'-Deoxyguanosine, inhibition of aspartate transcarbamylase by. Bresnick, 1926

Deoxyribonuclease acid. See also Nucleic acids.

—, effect of purinecycin on division of. Mueller, Kajiwara, Stubblefield, and Rueckert, 1084

—, from parotid gland tumors, oncogenic properties of, in mice. Hays and Carr, 1139

—, incorporation of aminouracil mustard into, in tissues of tumor-bearing rats. Byvoet and Busch, 949

—, incorporation of iododeoxyuridine into, in mouse and rat. Kriss, Tung, and Bond, 1257

—, in normal and tumorous rat liver. Koulish and Lessler, 1188

—, 6-methylyaminopurine utilized for synthesis of. Jamison, Huff, and Gordon, 1252

—, synthesis and cell renewal in regenerating rat liver. Grisham, 949

—, synthesis, and folates in cell division, review. O'Brien, 967

—, synthesis of, in chromosomes of HeLa cells. Stubblefield and Mueller, 1091

Deoxyuridine kinase, during development of resistance to 2-5-fluourouracil. Reichard, Skold, Klein, Revésa, and Magnusson, 925

Deoxyuridine phosphorylase, during development of resistance to 2-5-fluouracil. Reichard, Skold, Klein, Revésa, and Magnusson, 925

Desacetilthiocolchicine, tested on H.Ep. #8 tumor in newborn Swiss mice. Merker, Bowie, and Ando, 382

Desertomycin, inhibitory action against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1181

3,7-Diacycteyl-1,2,5,6-dibenzanthracene, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

N,N'-Diacycteyl-4,4'-diamino-diphenylmethane. See p,p'-Methylenebicatenilidil.

N,N'-Diacycteyl-fluorene-2,5-diamine. See 2,5-Bis(acetylamino)-fluorene.

2,6-Diamino purine, with hadacidin, effect on E. coli. Shigeura and Gordon, 1385

O-Diazoocteyl-2-sine. See Asaserine.

6-Diazo-5-azo-L-norleucine, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schein, and Siminoff, 885

—, effects on nucleic acid metabolism. Barclay, Garfinel, and Phillips, 809

—, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1191

Dibenzo[a]anthracene. See 1,2,3,4-Dibenzoanthracene.

Dibenzo[a]anthracene. See 1,2,5,6-Dibenzoanthracene.

Dibenzoanthracene, derivatives of, carcinogenic activities. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

1,2,3,4-Dibenzoanthracene, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

—, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 931

—, tritiated, preparation of. Giovanello, Abell, and Heidelberger, 925

1,2,5,6-Dibenzoanthracene, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 931

—, tritiated, preparation of. Giovanello, Abell, and Heidelberger, 925

1,2,5,6-Dibenzo-3,4-anthraquinone, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

1,2,5,6-Dibenzo-9,10-anthraquinone, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

3,4,9,10-Dibenzozyrene, chemotherapy of mouse tumors induced by. Homburger, Russfeld, Baker, and Tregier, 398

3',5'-Dichloromethoxytrinitrobenzene, effect on sublines of Ehrlich carcinoma compared with amethopterin. Sartorelli and Booth, 125

—, treatment of leukemia mice with, formate-C14 incorporation during. Schrecker, Mead, and Goldin, 15

Dienestrol, effect on electron transport in tumor mitochondrial extracts. Dietrich, 1987

Diet, deficient in folic acid, and effect on tumor growth in rat. Rosen and Nichol, 495

—, effect of ethionine on free nucleotides in rat liver. Caldarera, Budini, Barbiroli, and Rabbi, 1026

—, effect of heated fat in, on carcinogenic activity of 2-acetylaminofluorene. Sugai, Witting, Tsujiyama, and Kummerow, 310

—, effect on uracil incorporation into liver and tumor RNA, rat. Cantarow, Williams, and Paschik, 1021

—, low-fat, effect on benzpyrene hydroxylase activity in gastrointestinal tract. Wattenberg, Leong, and Strand, 1120

Diethylestern inophoramides, alkyl and aralkyl, structure and carcinostatic activity of. Crossley, Hul, and Allison, 540

Diethylstilbestrol, effect of cysteine on metabolic changes in rat liver produced by. MiZrahi and Emmet, 389

Diethylstilbestrol, effect on electron transport in tumor mitochondrial extracts. Dietrich, 1987

—, given to rats with mammary tumors, with and without ovarietomy, purine metabolism in. Wheeler, Alexander, Dodson, and Briggs, 1908

6a-Diafluorodinisoisone, relation to metastases, in mouse. Albert and Zeidman, 1297

Dihydrofuletate reductase, increased, associated with amethopterin resistance in mouse leukemia. Friedkin, Crawford, Humphreys, and Goldin, 600

—, in sensitive and resistant leukemic cells. Friedkin and Goldin, 607

3,4-Dihydroxy-3,4-dihydro-1,2,5,6-dibenzoanthracene, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

Dimethene sulfonylbutane. See Myleran.

1,6-Dimethene sulfonyl-D-mannitol, tested on H.Ep. #8 tumor in newborn Swiss mice. Merker, Bowie, and Ando, 382

3,4-Dimethoxy-1,2,5,6-dibenzoanthracene, moderately active carcinogen on mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

3,7-Dimethoxy-1,2,5,6-dibenzoanthracene, not carcinogenic to mouse skin. Heidelberger, Baumann, Griesbach, Ghabor, and Vaughan, 78

p-Dimethylaminobenzene, carbon incorporation into rat liver nucleic acid. Berenborn, 1343

—, liver cancer induced by, in rat, glucokinase activity and glycogen levels. Shattan, Donnelly, and Weinhouse, 1372
——, liver carcinogenesis induced by, subcellular distribution of metallic cations. Bresciani and Auricchio, 1894
——, liver tumors induced by, cytological aspects, in rat. Koulsh and Lesaler, 1188
——, mitotic activity in rat liver during carcinogenesis by. Daoust, 748
2-Dimethylamino-3-nitrofluorene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1022
2',6-Dimethyl-1,2-benzanthracene, weak carcinogenic activity of, on mouse skin. Heidelberger, Baumann, Griesbach, Ghorbar, and Vaughan, 78
7,12-Dimethylbenz[a]anthracene. See 9,10-Dimethyl-1,2-benzanthracene.
10,10-Dimethyl-1,2-benzanthracene, administered to hamster cheek pouch, enzymatic processes in. Mori, Miyagi, Murata, and Nagasuha, 1928
——, applied to hamster cheek pouch, changes in enzymes. Scott, Morris, Reisken, and Pakoskey, 857
——, injected into mice, induction of malignant lymphoma by. Rappaport and Baroni, 1067
——, in mammary cancer induction, and role of ovarian hormones. Dao, 978
——, mammary tumors induced in rats with, purine metabolism in. Wheeler, Alexander, Dodson, and Briggs, 1309
——, necrosis of endocrine glands induced by. Wong, Warner, and Yang, 1058
——, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981
——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 925
14-Dimethylbenz[a]anthracene. See 9,10-Dimethyl-1,2,5,6-dibenzanthracene.
10,10-Dimethyl-1,2,5,6-dibenzanthracene, active carcinogen for mouse skin. Heidelberger, Baumann, Griesbach, Ghorbar, and Vaughan, 78
——, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981
——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 925
M,N-Dimethyl-3-nitrofluorene-2-amine. See 2-Dimethylamino-3-nitrofluorene.
Dimethylglyoxamine, effect of cysteine on metabolic changes in rat liver produced by. Mizrahi and Emmelot, 389
2,5-Dinitrofluorene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002
2,7-Dinitrofluorene, comparative carcinogenicity of, in rat. Miller, Fletcher, Margreth, and Miller, 1008
Dinitrophenol, effects on fatty acid oxidation by transplantable tumors. Ellis and Schofield, 305
2,4-Dinitrophenol, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1849
——, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131
Disodium versenate, effect on cellular adhesion and stickiness. Berwick and Conom, 968
DNA. See Deoxyribonucleic acid.
Dog's, benzpyrene hydrolysis activity in duodenum of. Wattenberg, Leong, and Strand, 1180
——, toxic and pathologic effects of methylglyoxal-bis(guanilhydrzone) in. Mihich, Simpson, and Mulhern, 968
DON. See 6-Diazo-5-oxo-L-norleucine.
DPNH-coenzyme Q reductase, effect of hydrophobic phenolic compounds on. Dietrich, 1987
DPNH-cytochrome c reductase, effect of hydrophobic phenolic compounds on. Dietrich, 1987
DPNH-oxidase, effect of hydrophobic phenolic compounds on. Dietrich, 1987
Duazamycin A-Li, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885
Duazamycin B-Na, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885
Dunning hepatoma, solid, rat, phosphatides of. Figard and Greenberg, 361
Eagle's KB cells. See KB cells.
Earle's L strain cells. See Strain L cells.
Echinomycin, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885
Ehrlich ascites tumor cells, effect of azauridine on. Brummer, Holland, and Sheehe, 113
——, effect of deoxyadenosine 1-N-oxide on nucleic acid synthesis in. Frederiksen and Klenow, 125
——, effects of folinic acid on inhibition of, by amethopterin. Sartorelli, Upchurch, and Booth, 102
——, effect of hydrocortisone on. Kodama, 1212
——, effects of uncoupling agents on fatty acid oxidation by. Ellis and Schofield, 305
——, effect of viruses on, in mice. Kurlwich, Jacobs, Weissman, and Southam, 582
——, hydrolysis of nucleotides by. Wallach and Ulbray, 228
——, inhibition of DNA thymine synthesis by, fluorinated pyrimidines. Mukherje and Heidelberger, 916
——, labeling of, following administration of labeled bromodeoxyuridine and bromodeoxyuridine to mice. Kriss and Révész, 254
——, lactic dehydrogenase-augmenting agent in. Yaffe, 573
——, metabolism of 6-methylaminopurine in mice bearing. Jamison, Huff, and Gordon, 1428
——, metabolism of 9-buty1-thioguanine in, with and without asessine treatment. Kimball and LePage, 1301
——, P3 uptake by liver phosphatides of mice bearing. Lee, Salmon, Mosser, and Loken, 1946
——, phosphatides of. Figard and Greenberg, 361
——, resistance of, against 5-fluorouracil. Reichard, Skold, Klein, Révész, and Magnusson, 235
——, resistant, uridine kinase-deficient, and treatment with 5-fluorouracil. Skold, Magnusson, and Révész, 1236
——, respiratory inhibitions induced by D-glucose and 8-deoxy D-glucose in. Ileson, Cole, and McKe, 182
——, thymidylate synthetase from various lines of. Häggmark, 408
——, transplanted subcutaneously, effect on skin epithelium of mouse. Argyris and Argyris, 78
Ehrlich ascites carcinoma (Lettre), effect of cucurbetacins on. Gallily, Shohat, Kalish, Gitter, and Lavie, 1098
Ehrlich carcinoma, comparative effects of amethopterin and 3',5'-dichloromethopterin on sublines of. Sartorelli and Booth, 94
——, lysosome in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 830
——, mouse, effect of actinogen on, in vivo. Bradner and Sugiu, 187
Ehrlich-Landschütz carcinoma, solid, mouse, glucose, lactate, and lactic dehydrogenase activity in. Burgess and Sylven, 581
Elaterizin A, antitumor effect of, on Ehrlich ascites. Gallily, Shohat, Kalish, Gitter, and Lavie, 1098
Elaterizin B, antitumor effect of, on Ehrlich ascites. Gallily, Shohat, Kalish, Gitter, and Lavie, 1088
Elaterin methylether, antitumor effect of, on Ehrlich ascites. Gallily, Shohat, Kalish, Gitter, and Lavie, 1088
Electron microscopy, histiocyte response to ascites tumor homografts. Journey and Amos, 998
——, of ascites tumor cells and resistant sublines. Hiro and Kojima, 382
Electron microscopy—Continued

Electrophoresis, of human endometrial carcinoma. Nilsson, 492
Electrophoresis, of pulmonary adenomas in mice. Svoboda, 1197
Electrophoresis, of radiation-induced myeloid leukemias in mice. Parsons, Upton, Bender, Jenkins, Nelson, and Johnson, 789
Electron transport, in transplantae hamster melanomas. Stakli and Lous-talot, 84
Endometrial carcinoma, human, electron microscopy of. Nilsson, 492
Endomycin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1381
Endotoxin, lack of induction of metastases of rat tumors by. Fisher and Fishier, 478
Endoxan. See Cyclophosphamide.
Environmental carcinogenesis, guest editorial. Eckardt, 395
Enzymatic processes, in hamster cheek pouch during carcinogenesis, histochemical observations. Mori, Miyaji, Murata, and Nagasuna, 1893
Enzymes, agent augmenting activity of plant lactic dehydrogenase. Yaffe, 579
Enzymes, aspartate transcarbamylase, in liver and hepatoma, feedback inhibition of. Bresnick, 1346
Enzymes, benzpyrene hydroxylase activity in gastrointestinal tract. Wattenberg, Leong, and Strand, 1120
Enzymes, catalase activity in hepatoma-bearing animals. Beckgcl, Price, and Morris, 674
Enzymes, dihydrofolate reductase in sensitive and resistant leukemic cells. Friedkin and Goldin, 607
Enzymes, effect of phenolic compounds on, in tumor mitochondria. Dietrich, 1927
Enzymes, effects on cellular adhesion and stickiness. Berwick and Coman, 992
Enzymes, folic acid reductase and amethopterin resistance in cultured mouse cells. Hakala and Ishihara, 987
Enzymes, glucose-6-phosphate oxidation, in hamster cheek pouch. Scott, Morris, Reisink, and Pakokey, 857
Enzymes, hepatocarcinogenesis and precancerous loss of 5-hydroxytryptophan decarboxylase activity. Kiser, 198
Enzymes, increased dihydrofolate reductase associated with amethopterin resistance in mouse leukemia. Friedkin, Crawford, Humphreys, and Goldin, 600
Enzymes, in mouse liver, in degradation of asaerine. Jacques and Sherman, 66
Enzymes, lactic dehydrogenase activity in interstitial fluid and mouse tumors. Burgess and Sylvén, 581
Enzymes, limiting, for glycogen storage in tumors. Nigam, MacDonald, and Cantero, 181
Enzymes, of uracil pathway, during development of resistance to 5-fluourouracil. Reichard, Skold, Klein, Révész, and Magnusson, 205
Enzymes, role in lactate production by Sarcoma 180 in mice treated with 6-mercaptopurine. Fodor, Clarke, and Bodansey, 1280
Enzymes, thymidylate synthetase from tumor lines resistant to 5-fluorouracil. Hijmark, 586
Enzymes, uridine kinase in Ehrlich sarcoma cells. Skold, Magnusson, and Révész, 1226
Enzyme systems, proteolytic, rat tissues, effect of growth of ovarian tumors on. Blackwood, Mateyko, and Mandl, 993
Epoxide, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
Epoxides, mechanism of action as cytotoxic alkylating agent, review. Wheeler, 651
Escherichia coli B, effect of hadacidin on. Shigeura and Gordon, 1356
Estrogen, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1893
Estrogen, effect on electron transport in tumor mitochondrial extracts. Dietrich, 1827
Estrogen, and electron transport in tumor mitochondrial extracts. Dietrich, 1827
Estrogen, after implantation of hypophyses, and mammary tumors in mice. Boot, Mühlbock, Röpke, and Tengbergen, 713
Estrogen, effect on free nucleotides in rat liver. Caldarera, Budini, Barbiroli, and Rabbi, 1028
Estrogen, hepatoma 2, rat, collagen content of. Gullino, Grantham, and Clark, 1081
Estrogen, hepatoma 3, rat collagen content of. Gullino, Grantham, and Clark, 1081
Estrogen, hepatoma T3-2, rat, collagen content of. Gullino, Grantham, and Clark, 1081
Ethyl carbamate. See Urethan.
Ethylencines, mechanism of action as cytotoxic alkylating agent, review. Wheeler, 651
Ethyleneimine, mechanism of action as cytotoxic alkylating agent, review. Wheeler, 651
Ethyleneimine-3-triazine. See Triethylencemelamine
Ethyleneimines, structure and carcinostatic activity of. Crossley, Kuh, and Allison, 540
Ethyleneimines, 9-Ethyl-o-mercaptopurine-S36, in vivo metabolism by the rat. Hansel, Giles, and Nadler, 761
Euclia gracilis, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
Exocidin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1381
Exercise, influence on growth of transplanted rat tumors. Hoff- man, Paschkis, DeBias, Cantarow, and Williams, 597
Fats. See Lipides.
Fatty acid oxidation, effects of uncoupling agents on, by transplanted tumors. Ellis and Scholefield, 305
Fatty acids, composition of mouse skin, during normal and abnormal growth. Carruthers, 894
Fatty acids, long-chain, in rat hepatoma homogenates. Emmelot, 38
Feedback inhibition, in combination chemotherapy. Paigen, 1390
Fibrosarcoma 4556, rat, collagen content of. Gullino, Grantham, and Clark, 1081
Fibrosarcoma 1P169, mitotic rates of. Bertalanfey and Lau, 827
Fibrosarcoma, induced by injection of 3,4,9,10-tiibenzpyrene into mice. Homburger, Russfeld, Baker, and Tregier, 386
Filipin, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1126
Filipin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1181
Fish, experimental induction of lesions of notochond of. Levy, 441
Flexner-Jobling carcinoma, lysozyme in kidney and spleen of rats bearing. Cappuccino, Reilly, and Winston, 880
Flax, effect of actinogen on, in vivo. Bradner and Sugiuira, 167
2-Fluorenamine. See 2-Aminoalufenricine.
2-Fluorenamines, derivatives of, carcinogenicities of. Miller, Fletcher, Margreth, and Miller, 1002
2-Fluorenamylacetamide. See 2-Acetaminoalufenricine.
N(2-Fluorenlyl)formamide. See 2-Formylaminourenlicine.
2-Fluorenlylalufenricine. See 2-Alkylidinourenlicine.
Fluorescent antibodies, in cancer research, review. Glück, 895
Germiston, new virus in tumor-bearing mice. Krulwich, Jacobs, Weisman, and Southam, 322
Glioma, mouse, transplantable, induced host resistance to. Scheinberg, Levine, Susuki, and Terry, 67
Glioma 26, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850
—, mouse, effect of actinogen on, in vivo. Bradner and Sugiu, 167
Glutoxin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131
γ-Globulin, with lipopolyaccharide, effect on tumor growth. Antopol and Chryssanthou, 89
Globulins, serum, and bronchogenic carcinoma. Nettleship, 696
Glucocorticoid activity, of steroids, relation to metastasis, in mouse. Albert and Zeidman, 1397
Glucokinase, activity during hepatocarcinogenesis by azo dyes, in rat. Shatton, Donnelly, and Weinhouse, 1378
Glucosamine, and galactosamine, in plasma glycoproteins in human diseases. Macbeth and Bekesi, 1170
Glucose, change in balance, in leukemic rats. Freedland and Waisman, 701
—, in interstitial fluid and mouse tumors. Burgess and Sylven, 581
D-Glucose, respiratory inhibition induced in Ehrlich ascites tumor cells by: Isen, CO, and McKeen, 192
Glucose-6-phosphate dehydrogenase, changes in, in hamster cheek pouch during carcinogenesis. Scott, Morris, Reiskin, and Pakoskey, 857
Glucose-6-phosphate oxidation, enzymes of, in hamster cheek pouch. Scott, Morris, Reiskin, and Pakoskey, 857
β-Glucuronidase, activity in hamster cheek pouch during experimenal carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1926
L-Glutamine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797
Glycogen, levels during hepatocarcinogenesis by azo dyes, in rat. Shatton, Donnelly, and Weinhouse, 1378
—, storage, limiting enzymes for, in tumors. Nigam, MacDonald, and Canter, 131
Glycogen synthetase, in glycogen storage in tumors. Nigam, MacDonald, and Cantero, 131
Glycosylation, anacrobic, of human malignant and normal tissue. Macbeth and Bekesi, 244
Glycoproteins, plasma, in various disease states and cancer. Macbeth and Bekesi, 1170
—, urinary, in human leukemia. Tuni and Weinfield, 764
Gonadal hormones, effect on spontaneous and methylcholanthrene-induced leukemia in mice. Liebelt and Liebelt, 1180
Gonadectomy, effect on spontaneous and methylcholanthrene-induced leukemia in mice. Liebelt and Liebelt, 1180
Gramicidin, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1165
—, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1181
Griseofulvin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
—, oral, cocarcinogenic agent to cutaneous tumors. Barich, Schwar, and Barich, 53
Gross lymphoma, induced resistance against, cytotoxic and neutralization tests. Slettenmark and Klein, 947
Gross virus, lymphomas induced by, resistance against. Klein, Sjögren, and Klein, 955
Growth, of transplanted rat tumors, influence of exercise on. Hoffman, Paschkis, DeBias, Cantarow, and Williams, 397
Growth hormone, effect on uracil incorporation into liver and tumor RNA, rat. Cantarow, Williams, and Paschkis, 1021
Growth potential, in human cell culture, chemicals required to induce cell alterations. Ludovici, Ashford, and Miller, 797
—, in human cell culture, induced and spontaneous alterations in. Ludovici, Ashford, and Miller, 788
Growth rate, of cultures of white spruce tissue. de Torok and Rodrick, 174
Guanine-S-Cl+, anabolism and catabolism by minced rat tissues. Wheeler, Alexander, Dodson, Briggs, and Morris, 769
Guinea pig, benzpyrene hydroxylase activity in duodenum of. Wattenberg, Leong, and Strand, 1120
—, tumors of, induced by methylcholanthrene. Blumenthal and Rogers, 1155

II. Ad. #1. See Human adenocarcinoma #1.

Hadacidin. See Niforomyl hydroxyaminocetate.

Hamsters, bearing plasmacytomas, treated in vivo with cyclophosphamide. Wheeler, Alexander, Dodson, and Briggs, 1309
—, benzpyrene hydroxylase activity in duodenum of. Wattenberg, Leong, and Strand, 1120
—, check pouch, carcinogenesis in, changes in enzymes of glucose-6-phosphate oxidation. Scott, Morris, Reiskin, and Pakoskey, 857
—, check pouch of, heterologous transplantation of human adenocarcinoma in. Yohn, Hammon, Atchison, and Casto, 443
—, cortisone-treated, heterotransplantation of choriocarcinoma into. Pierce, Midgley, and Verney, 508
—, elevation of lysozyme in kidney and spleen of tumor-bearing animals. Cappuccino, Reilly, and Winston, 850
—, experimental carcinogenesis in check pouch, enzymatic processes in. Mori, Miyaji, Murata, and Nagasuna, 1926
—, growth potentials of precancer of cervix uteri of. Mellgren, Boeryd, and Hagman, 139
—, transplatable melanomas of, electron microscopy of. Staubli and Loustalot, 84

Harding-Passey melanoma, mouse, effect of actinogen on, in vivo. Bradner and Sugiu, 167

HeLa cells, effect of puromycin on DNA synthesis in. Mueller, Kijawara, Stubblefield, and Rueckert, 1084
—, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617
—, susceptibility to antitumor antibiotics. Price, Buck, Schlein, and Siminoff, 885
—, synthesis of DNA in chromosomes of. Stubblefield and Mueller, 1091

HelA-Sey, modal distribution of cell variants, effects of heterologous sera. Murphy, Bullis, Landau, and Acosta, 906
HelA-S3, modal distribution of cell variants, effects of heterologous sera. Murphy, Bullis, Landau, and Acosta, 906
Heparin, added to nutrient medium, effect on human sarcomas in tissue culture. Spatz, 914

Hepatocarcinogenesis, and precancerous loss of 5-hydroxytryptophan decarboxylase activity. Kiser, 196
Hepatoma, and normal liver, biochemical effects of hepatocarcinogens, review. Reid, 398
—, collagen content of. Gullino, Grantham, and Clark, 1031
—, ethionine-induced, rat, catalase activity in. Rechcligl, Price, and Morris, 874
Human sarcoma No. 1, lysozyme in kidney and spleen of hamsters bearing. Cappuccino, Reilly, and Winston, 850

Human sarcomas, in tissue culture, morphologic and histochcmical features of. Spatz, 914

Hydrocarbons, carcinogenic, tritiated, binding to soluble skin proteins, mouse, Abell and Heidelberger, 981
—, guinea pig tumors induced by methylcholanthrene. Blumenthal and Rogers, 1155
—, polycyclic, and benzyrene hydroxylase activity in gastrointestinal tract. Wattenberg, Leong, and Strand, 1120
—, polyneural, in mammary cancer induction, and role of ovarian hormones. Dso, 973
—, tritiated carcinogenic, preparation and purification. Giovannella, Abell, and Heidelberger, 925

Hydrocortisonc, effect on Ehrlich ascites tumor. Kodama, 1912

N'-Hydroxy-2-acetylaminofluorenc, carcinogenicity in the rat. Miller, Enomoto, and Miller, 1586
—, urinary metabolites of, in rhesus monkey. Enomoto, Lotlikar, Miller, and Miller, 1586

Hydroxyethylolation, effect on uptake of rat albumin by rat tissues. Starbuck and Bueh, 1206

N'-Hydroxv-2-dzuresylacetamide. See N'-hydroxy-2-acetylaminofluorenc.

N'-Hydrolyzation, of 2-acetylaminofluorenc in the rabbit. Irving, 887

5-Hydroxytryptophan decarboxylase, hepatocarcinogenesis and precancerous loss of activity. Kizer, 196

Hyposysemal tissue, isografts of, and induction of mammary cancer in mice. Boot, Miihbock, Ripecke, and Tengbergen, 713

Hyposysemcnt, effect on uracil incorporation into liver and tumor DNA, rat. Cantorow, Williams, and Paschik, 1921
—, of rats with mammary tumors, purine metabolism in. Wheeler, Alexander, Dodson, and Briggs, 1309

Hyoxanthine-6-C14, anabolism and catabolism by minced rat tissues. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

Ibavetin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Immunity, induced, of skin, vagina, and urinary bladder to bovine papillomavirus. Olson, Luedke, and Brobat, 408
—, induced tumor, to transplantable mouse glioma. Scheinberg, Levine, Suzuki, and Terry, 67

Immunology, antibodies to 1,8-naphthoquinone. Ollofort and Rose, 689
—, resistance against isolation transplantation of lymphomas. Klein, Sjogren, and Klein, 955

Inflammatory response, to foreign body within transplantable tumors. Mahoney and Leighton, 804

Inhibition, respiratory, induced in Ehrlich ascites tumor cells by D-glucose. Hoen, Cox, and McKeen, 182

Inhibitors, metabolic, effect on tyrosine transport in Sarcoma 2 cells. Chiirigos, Fanning, and Guroff, 1349
—, metabolic, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1191

Inoculation, method of, compared on effect on Cytoxin on leukemia L1210. Chiirigos, Humphrey, and Goldin, 187

Interstitid fluid, glucose, lactate, and lacte dehydrogenase activity in, in mouse. Burgess and Sylven, 811

Intestine, benzyrene hydroxylase activity in. Wattenberg, Leong, and Strand, 1120
—, mouse, enzymatic degradation of azaserine by. Jacques and Sherman, 56

—, small, effect of 6-diazo-5-oxo-L-norleucine on nucleic acid metabolism in. Barclay, Garfinkel, and Phillips, 809

Iodosacetic acid, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Iodosedoxycytidine, fate in mouse and rat. Kriese, Tung, and Bond, 1257

5-Iodo-2'-deoxyuridine, inhibition of aspartate transcarbamylase by. Bresnick, 1846

IRC 741 leukemia, in rats, effect of chemotherapy, development of sublines. Armaghan, 1075

Iron compounds, lack of carcinogenicity in rats and mice. Gilman, 195

Irradiation. See also Radiation and X-radiation.
—, of mouse, in induction of thyrotopie tumor. Messier and Furl, 804

Isolation-perfusion, of rat hind limb, techmic for. Turner, Tod, Francis, Greenhill, and Couves, 49

L-Isolcucine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Jensen sarcoma, catabolism of xanthine and uracil in rats bearing. Wu and Bauer, 1259
—, lysozyme in kidney and spleen of rats bearing. Cap- pcucino, Reilly, and Winston, 820
—, rat, effect of actinogen on, in vivo. Badner and Sugiuira, 167

—, rat, resistant to mitomycin C, transplantation of. Merker, Reyes, and Anido, 1183

KB cells, biological studies, collagen plate assay for cytotoxic agents. Bhuyan, Renis, and Smith, 1131
—, in collagen plate assay for cytotoxic agents. Renis, Johnson, and Bhuyan, 1166
—, purine antagonists tested against, in mice. Montgomery, Schabel, and Skipper, 504

Kidney, elevated lysozyme in extracts of, in tumor-bearing animals. Cappuccino, Reilly, and Winston, 850
—, mouse, enzymatic degradation of azaserine by. Jacques and Sherman, 56
—, normal, mouse or rat, inflammatory response to foreign body within. Mahoney and Leighton, 854
—, rat, effect of induced synthesis of pyridine nucleotides on metabolism of RNA in. Revel and Mandel, 456
—, tumors, in mice, induced by 20-methylcholanthrene-impregnated s[rgments. Stevenson and von Haam, 1177
—, uptake of hydroxylated rat albumin by. Starbuck and Bueh, 1206

Kreb's-2 ascites tumor, mouse, effect of azaserine on. Bruemer, Holland, and Sheehe, 113

Kreb's-2 carcinoma, effects on lipid metabolism of mice. Costa and Holland, 1081

Lactate, in interstitial fluid and mouse tumors. Burgess and Sylven, 881
—, production in homogenates of Sarcoma 180, enzyme activities. Fodor, Clarke, and Bodansky, 1293

Lactic dehydrogenase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1923
—, activity in interstitial fluid and mouse tumors. Burgess and Sylven, 881
—, activity in plasma, augmenting agent of, distribution and in vivo propagation. Yaffe, 573

L-Asparaginase, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Leukemia. See also Lymphomas.
—, chloro-, spontaneous transplantable, in Wistar rat. Schreiner and Will, 727
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukemia</td>
<td>748</td>
</tr>
<tr>
<td>Leukemia</td>
<td>314</td>
</tr>
<tr>
<td>human, tissue culture studies on</td>
<td>764</td>
</tr>
<tr>
<td>lymphatic, in mice, enzymes involved in glycogen storage</td>
<td>1180</td>
</tr>
<tr>
<td>myeloid, radiation-induced, in mice, electron microscopy of</td>
<td>737</td>
</tr>
<tr>
<td>rats, development of sublines, effect of chemotherapy</td>
<td>1075</td>
</tr>
<tr>
<td>Leukemia</td>
<td>600</td>
</tr>
<tr>
<td>effect of Cytoxan on proteins of, in sensitive and resistant strains</td>
<td>1882</td>
</tr>
<tr>
<td>histiocyte response to actinase form. Journey and Amos</td>
<td>998</td>
</tr>
<tr>
<td>incorporation of formate-C14 in mice bearing, during amethopterin treatment</td>
<td>607</td>
</tr>
<tr>
<td>mouse, effect of azauridine on</td>
<td>118</td>
</tr>
<tr>
<td>Leukemia</td>
<td>850</td>
</tr>
<tr>
<td>Leukemia</td>
<td>56</td>
</tr>
<tr>
<td>Leukemia</td>
<td>100</td>
</tr>
<tr>
<td>Leukemia</td>
<td>507</td>
</tr>
<tr>
<td>Leukemia</td>
<td>504</td>
</tr>
<tr>
<td>Leukemia</td>
<td>507</td>
</tr>
<tr>
<td>Leukemia</td>
<td>118</td>
</tr>
<tr>
<td>Leukemic, nucleic acid metabolism</td>
<td>49</td>
</tr>
<tr>
<td>Lewis bladder carcinoma</td>
<td>823</td>
</tr>
<tr>
<td>Lewis lung carcinoma</td>
<td>877</td>
</tr>
<tr>
<td>Lipids, phosphatides of mouse ascites tumors and rat hepatomas. Figard and Greenberg, 361</td>
<td></td>
</tr>
<tr>
<td>Lipids, effects of Krebs-2 carcinomas on, in mice. Costa and Holland, 1081</td>
<td></td>
</tr>
<tr>
<td>liver, changes in mouse following injection of ascitic tumor. Siegler and Koprowska, 1878</td>
<td></td>
</tr>
<tr>
<td>Lipopolygalacturonic acid, from Proteus vulgaris, with γ-globulin, effect on tumor growth. Antopol and Chryssanthou, 89</td>
<td></td>
</tr>
<tr>
<td>Liver, aspartate transcarbamylase in, feedback inhibition. Bresnick, 1946</td>
<td></td>
</tr>
<tr>
<td>Lipid metabolism, effects of Krebs-2 carcinomas on, in mice. Costa and Holland, 1081</td>
<td></td>
</tr>
<tr>
<td>Lipids, phosphatides of mouse ascites tumors and rat hepatomas. Figard and Greenberg, 361</td>
<td></td>
</tr>
<tr>
<td>Lipids, effects of Krebs-2 carcinomas on, in mice. Costa and Holland, 1081</td>
<td></td>
</tr>
<tr>
<td>Lipid metabolism, effects of Krebs-2 carcinomas on, in mice. Costa and Holland, 1081</td>
<td>49</td>
</tr>
</tbody>
</table>
Liver—Continued

[...]

Lung. See also Pulmonary.

Lung adenomas, induced by transplacental exposure to urethane, in mice. DiPaolo, 299

Lymphosarcoma, in mice, electron microscopy of. Svoboda, 1197

Lymphosarcoma, in mice, induced by cigarette smoke condensate and urethane. DiPaolo and Sheebe, 1088

Luteomycin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

Lymphoma. See also Leukemia.

[...]

Lymphoma L1210. See Leukemia L1210.

Lymphosarcoma, bovine, clinical aspects and herd studies. Marshak, Correll, Lawrence, Croshaw, Schryver, Altera, and Nichols, 392

Lymphosarcoma Mecca, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850

Lymphosarcoma Murphy-Sturm, influence of exercise on growth of, in rat. Hoffman, Paschikia, DeBais, Cantarow, and Williams, 597

Lymphosarcoma Murphy-Sturm, effect of actinogen on, in vivo. Bradner and Sugura, 167

Lymphosarcoma Mecca, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850

Lymphosarcoma, rat, effect of actinogen on, in vivo. Bradner and Sugura, 167

Lymphosarcoma R-2798, rat, collagen content of. Gullino, Grantham, and Clark, 1081

L-Lysine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Lysozyme, elevation in kidney and spleen, in tumor-bearing rodents. Cappuccino, Reilly, and Winston, 850

Maen strain cells, modal distribution of cell variants, effects of heterologous sera. Murphy, Bullis, Landau, and Acosta, 906

Magnesium, subcellular pattern in liver carcinogenesis, in rat. Bresciani and Auricchio, 1284

Magnesium ions, inhibit cell alterations in human cell culture. Ludovici, Ashford, and Miller, 797

2-Maleimidofluorene, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002

Male dehydrogenase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1178

Maleic acid, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Mammary adenocarcinoma. See Adenocarcinoma.

Mammary cancer, induction in mice, by hypophyseal isografts. Boot, Mühlbock, Röpcke, and Tengbergen, 718

[...]

ovarian hormones and polyacrylamide hydrocarbons in induction of, in rats. Dao, 978

spontaneous, mouse, survival of skin homografts in. Linder, 390

Mammary carcinoma. See also Carcinoma.

[...]

Mammary carcinoma 755. See Adenocarcinoma 755

Mammary carcinoma H52454, mouse, inflammatory response to foreign body within. Mahoney and Leighton, 384

Mammary tumors, induced in rats, purine metabolism in, following various treatments. Wheeler, Alexander, Dodson, and Briggs, 1999

Mammo-somatotropic tumors, in rats and mice, adenotrophic activity in. Takemoto, Yokoro, Puth, and Cohen, 917

Mannose, and lactose, of glycoprotein fraction of human plasma in disease. Macbeth and Bekesi, 1170

Marrow, bone. See Bone marrow.

McI M rhadomyosarcoma, solid, mouse, glucose, lactate, and lactic dehydrogenase activity in. Burgess and Sylvén, 381

Mecka lymphosarcoma. See Lymphosarcoma Mecka.

Mechloretamine. See Methylation(2-chloroethyl)amine. 3'-Me-DAB. See 3'-Methyl-4-dimethylaminoazobenzene.

M melanoma 1, hamster, electron microscopy of. Staubli and Loudalot, 84

Melanoma, in mice, enzymes involved in glycerogen storage in. Nigam, MacDonald, and Cantero, 191

[...]

M melanoma Harding-Passey. See Harding-Passey melanoma.

Mephalan, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1949

[...]

6-Mercaptopurine riboside, effect on growth of H.Ep. #1 and chick embryo fibroblast cells. Rich, Perez, and Eddinoff, 3

[...]

M Mesenchymoma, transplantable metastasizing, in rat. Maddock, Kury, and Riley, 291

Metabolic inhibitors, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1949

[...]

Metal carcinogenesis, effect of cobalt oxide and thorium dioxide, in rats and mice. Gilman and Ruckerbauer, 192
<table>
<thead>
<tr>
<th>Index to Volume 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Methionine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797</td>
</tr>
<tr>
<td>Methionine-S^35, incorporation into protein of sensitive and resistant strains of leukemia L1210. Strozier and Nyhan, 1392</td>
</tr>
<tr>
<td>Methotrexate, effects of folinic acid on inhibition of Ehrlich ascites carcinoma induced by. Sartorelli, Upchurch, and Booth, 102</td>
</tr>
<tr>
<td>——, effects of large doses in cancer patients. Condit, Shnider, and Owen, 706</td>
</tr>
<tr>
<td>——, effect on development of sublines of leukemia in rat. Armaghani, 1075</td>
</tr>
<tr>
<td>——, effect on sublines of Ehrlich carcinoma compared with 3',5'-dichloroethemetopin. Sartorelli and Booth, 94</td>
</tr>
<tr>
<td>——, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617</td>
</tr>
<tr>
<td>——, rat tumor refractory to, and effect of dietary restriction of folic acid on tumor growth. Bowen and Nichol, 405</td>
</tr>
<tr>
<td>——, resistance, and chromosomal constitution, in cultured mouse cells. Hakala and Ishaba, 987</td>
</tr>
<tr>
<td>——, resistance in mouse leukemia, and dihydrofolate reductase. Friedkin, Crawford, Humphreys, and Goldin, 600</td>
</tr>
<tr>
<td>——, tested against heterotransplanted choriocarcinoma. Pierce, Midgley, and Verney, 563</td>
</tr>
<tr>
<td>——, tested in collagen plate assay on KB cells, Bhuyan, Renis, and Smith, 1121</td>
</tr>
<tr>
<td>——, tested on chemically induced mouse tumors and transplants. Homburger, Russfield, Baker, and Tregier, 388</td>
</tr>
<tr>
<td>——, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 582</td>
</tr>
<tr>
<td>——, treatment of leukemia mice with, formate-C^14 incorporation during. Schrecker, Mead, and Goldin, 15</td>
</tr>
<tr>
<td>——, trophoblastic disease resistant to, treated with actinomycin D, in women. Ross, Stolbach, and Herta, 1015</td>
</tr>
<tr>
<td>——, with hadacadin, effect on E. coli. Shigehara and Gordon, 1556</td>
</tr>
<tr>
<td>3-Methoxy-1,2,5,6-dibenzanthracene, weak carcinogenic activity of, on mouse skin. Heidelberger, Baumann, Griesbach, Gohar, and Vaughan, 78</td>
</tr>
<tr>
<td>9-Methoxy-1,2,5,6-dibenzanthracene, active carcinogen for mouse skin. Heidelberger, Baumann, Griesbach, Gohar, and Vaughan, 78</td>
</tr>
<tr>
<td>4'-Methyl-4-actylaminobiphenyl, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002</td>
</tr>
<tr>
<td>6-Methylnitrosamine, metabolic studies on, in mice. Janison, Huff, and Gordon, 1825</td>
</tr>
<tr>
<td>5-Methylben[a]anthracene. See 3-Methyl-1,2-benzanthracene.</td>
</tr>
<tr>
<td>6-Methylben[a]anthracene. See 4-Methyl-1,2-benzanthracene.</td>
</tr>
<tr>
<td>7-Methylben[a]anthracene. See 10-Methyl-1,2-benzanthracene.</td>
</tr>
<tr>
<td>J-Methyl-1,2-benzanthracene, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981</td>
</tr>
<tr>
<td>——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 923</td>
</tr>
<tr>
<td>4-Methyl-1,2-benzanthracene, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981</td>
</tr>
<tr>
<td>——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 923</td>
</tr>
<tr>
<td>10-Methyl-1,2-benzanthracene, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981</td>
</tr>
<tr>
<td>——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 923</td>
</tr>
<tr>
<td>Methylbis(β-chloromethyl)amine, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617</td>
</tr>
<tr>
<td>——, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 582</td>
</tr>
<tr>
<td>3-or 20-Methylcholanthrene, effect of oral griseofulvin on mouse cutaneous tumors induced by. Barich, Schwartz, and Barich, 53</td>
</tr>
<tr>
<td>——, effect on survival of skin homogrfts, in mouse. Linder, 580</td>
</tr>
<tr>
<td>——, glioma in mouse induced by, host resistance to. Scheinberg, Levine, Suzuki, and Terry, 67</td>
</tr>
<tr>
<td>——, guinea pig tumors induced by. Blumenthal and Rogers, 1155</td>
</tr>
<tr>
<td>——, in mammary cancer induction, and role of ovarian hormones. Dao, 973</td>
</tr>
<tr>
<td>——, kidney tumors induced in mice by strings impregnated with. Stevenson and von Haam, 1177</td>
</tr>
<tr>
<td>——, leukemia induced by, effect of hormones on, in mice. Liebelt and Liebelt, 1180</td>
</tr>
<tr>
<td>——, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 981</td>
</tr>
<tr>
<td>——, tritiated, preparation of. Giovanna, Abell, and Heidelberger, 923</td>
</tr>
<tr>
<td>3'-Methyldimethylaminobenzene, liver cancer induced by, in rat, glucokinase activity and glycogen levels. Shattan, Donnelly, and Weinhouse, 1372</td>
</tr>
<tr>
<td>p'-Methylisodioxan, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002</td>
</tr>
<tr>
<td>2-Methyl-2-fluorenethiol. See 2-Methylfluorid.</td>
</tr>
<tr>
<td>Methylglyoxal-bis(guanilhydrazone), toxic and pathologic effects of, in various animals. Mihich, Simpson, and Mulhern, 982</td>
</tr>
<tr>
<td>3-Methyl-4-aminobiphenyl, in vivo metabolism by the rat. Hansen, Giles, and Nader, 701</td>
</tr>
<tr>
<td>2-Methyl-4-phenylisothiocyanate. See 3-Methyl-4-acetylamidobiphenyl.</td>
</tr>
<tr>
<td>2-Methylfluorid, little carcinogenic activity of. Miller, Fletcher, Margreth, and Miller, 1002</td>
</tr>
<tr>
<td>Microscopy, electron. See Electron microscopy. ——, fluorescence, of chick embryo cells and Rous virus. Hampton and Eidinoff, 1061</td>
</tr>
<tr>
<td>——, in vivo, pulmonary response to tumor cell emboli in rabbit. Potter, Buttarazzi, and Cozzarelli, 1202</td>
</tr>
<tr>
<td>Microsomes. See also Cell fractionation. ——, increase in activity, in rat liver, after afluorodetin treatment. Arrenius and Hultin, 828</td>
</tr>
<tr>
<td>Middleburg, new virus in tumor-bearing mice. Krulwich, Jacobs, Weisman, and Southam, 828</td>
</tr>
<tr>
<td>Miracil D, tested on chemically induced mouse tumors and transplants. Homburger, Russfield, Baker, and Tregier, 388</td>
</tr>
<tr>
<td>——, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 582</td>
</tr>
<tr>
<td>Mitramycin-Na, antitumor effect tested on HeLa and protozoa cells. Price, Buck, Schlein, and Siminoff, 885</td>
</tr>
<tr>
<td>Mitochondria. See also Cell fractionation.</td>
</tr>
</tbody>
</table>
Mitochondria—Continued

——, oxidative phosphorylation in, of ascites tumor. Sauer, Martin, and Stots, 692

——, of Novikoff hepatoma, catabolism of serum albumin by. Penn, 588

——, of rat liver, subcellular distribution of metallic cations during carcinogenesis. Bresciani and Auricchio, 1284

——, rat hepatoma, properties of. Emmelot, 38

Mitochondrial extracts, of adenocarcinoma 755, effect of phenolic compounds on electron transport in. Dietrich, 1387

Mitomycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Mitomycin C, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

——, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1126

——, effect on development of sublines of leukemia in rat. Armaghian, 1075

——, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1151

——, Jensen rat sarcoma resistant to. Merker, Reyes, and Anido, 1163

——, tested on chemically induced mouse tumors and transplants. Homburger, Russfield, Baker, and Tregier, 986

——, tested on H. Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 952

Mitosis, activity in rat liver, during DAB carcinogenesis. Daoust, 745

——, experimental and therapeutic modification of, symposium. Bieseie, 779

——, frequency, in cultures of white spruce tissue. de Torok and Rodrick, 174

——, rates of, of transplantable malignant rat tumors. Bertalanffy and Lau, 627

——, role of folate coenzymes in. O'Brien, 267

Miyone adenocarcinoma, lysosome in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 580

——, mouse, effect of actinogin on. in vitro. Bradner and Sugita, 167

Monkey, benzpyrene hydroxylase activity in duodenum of. Wattenberg, Leong, and Strand, 1120

——, rhesus, urinary metabolites of 3-acetylaminoazofluorene in. Enomoto, Lotlikar, Miller, and Miller, 1386

Moore sarcoma No. 1, rat, effect of actinogin on. in vivo. Bradner and Sugita, 167

Morris hepatoma, solid, rat, phosphatides of. Figard and Greenberg, 361

Morris hepatoma 3683, rat, catabolism of xanthine and uric acid. Wu and Bauer, 1290

——, rat, catalase activity in. Reechcigl, Price, and Morris, 874

——, rat, collagen content of. Gullino, Grantham, and Clark, 1081

Morris hepatoma 3924A, catabolism of xanthine and uric acid in rats bearing. Wu and Bauer, 1289

——, rat, collagen content of. Gullino, Grantham, and Clark, 1081

Morris hepatoma 3924C, rat, hormonal and nutritional effects on uric acid incorporation into RNA of. Cantarow, Williams, and Paschka, 1021

Morris hepatoma 5123, anabolism and catabolism of purines by. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

——, catabolism of xanthine and uric acid in rats bearing. Wu and Bauer, 1289

——, rat, catalase activity in. Reechcigl, Price, and Morris, 874

——, rat, collagen content of. Gullino, Grantham, and Clark, 1081

Morris hepatoma 5123A, feedback inhibition of aspartate transcarbamylase in. Bresnick, 1246

Morris hepatoma 5123D, feedback inhibition of aspartate transcarbamylase in. Bresnick, 1246

MT890 tumor, ascites, host responses to, in mouse. Siegler and Koprowska, 1278

——, ascites, mechanism of formation, in mouse. Siegler and Koprowska, 1273

Murphy-Sturm lymphosarcoma. See Lymphosarcoma Murphy-Sturm.

Muscle, mouse, enzymatic degradation of asparagus by. Jacques and Sherman, 56

Mustards, cytotoxic alkylating agent, mechanism of action, review. Wheeler, 621

Mycostatin, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Myleran, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

1,2-Naphthoquinone, antibodies to. Olloolart and Rose, 689

1,2-Naphthylacetamide. See 2-Acetaminonaphthalene.

1,2-Dihydroxy-3-naphthylamine. See 2-Aminonaphthalene.

Necrosis, in Walker 256 tumors, experimental study of. Schatten, 386

Neomycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

——, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Neoplasms. See Tumors or specific type of neoplasm.

Netropsin-sulfate, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

Neuraminidase, effect on cellular adhesion and stickiness. Birwick and Conan, 962

Nickel compounds, carcinogenicity in rats and mice. Gilman, 158

Nicotinamide, effect of stimulation of DPN synthesis by, on RNA, in rat kidney. Revel and Mandel, 466

Nifororny hydroxylaminosaccharide, activity as antitumor agent. Shigereu and Gordon, 1386

Nitrogen mustard. See Methyldihydrazine.

Nitrogen mustards. See also specific names, such as Cytoxan, Nitromin.

——, effect on development of sublines of leukemia, rat. Armaghian, 1075

——, mechanism of action, review. Wheeler, 651

Nitron, effect on development of sublines of leukemia, rat. Armaghian, 1075

N-Nitrosodialkylamines, carcinogenic, effect of styrene on metabolic changes in rat liver produced by. Mizrahi and Emmelot, 359

Notochord, tumor-like lesions of, in fish, induction of. Levy, 441

Novikoff hepatoma, ascitic, rat, phosphatides of. Figard and Greenberg, 361

——, catabolism of serum albumin by mitochondrial fraction of. Penn, 588

——, catabolism of xanthine and uric acid in rats bearing. Wu and Bauer, 1289

——, catalase activity in. Reechcigl, Price, and Morris, 874

——, enzymes involved in glycogen storage in. Nigam, Mac-Donald, and Cantero, 181

——, feedback inhibition of aspartate transcarbamylase in. Bresnick, 1246

——, rat, collagen content of. Gullino, Grantham, and Clark, 1081

Novobcin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Nuclear protein fraction, of Walker 256 carcinosarcoma. Busch, Hnilica, Chien, Davis, and Taylor, 637
Nuclei. See also Cell fractionation.

—, of rat liver, subcellular distribution of metallic cations during carcinogenesis. Bresciani and Aurielchio, 1284

Nucleic acid antagonists, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Nucleic acids. See also Ribonucleic acid and Deoxyribonucleic acid.

—, adrenal, effect of Sarcoma 180 and stressing agents on. Hill, Cowett, Johnson, and Borman, 449

—, metabolism of, in leukemic human leukocytes, in vitro incorporation. Williams, 314

—, metabolism of, in rat kidney, effect of nicotinamide on. Revel and Mandel, 456

—, precursor incorporation into, effect of 6-diazo-5-oxo-L-norleucine on. Barclay, Garfinkel, and Phillips, 809

—, synthesis, effect of deoxyadenosine 1-N-oxide on, in ascites tumor cells in vitro. Frederiksen and Klenow, 125

—, synthesis in rat liver, carbon incorporation from 14C-dimethylaminoazobenzene. Berenbom, 1449

Nucleoprotein synthesis, in folic acid deficiency, review. O'Brien, 267

Nucleoside diprophosphokinase, in glycogen storage in tumors. Nigam, MacDonald, and Cantero, 131

Nucleotide, free, effect of ethionine on, in rat liver. Caldarera, Budini, Barbironi, and Rabbi, 1028

—, hydrolysis of, by Ehrlich ascites tumor cells. Wallach and Ulrey, 295

Obituary. J. J. Bittner. Strong, 398

Ochromonas malhamensis, in comparative studies on diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, susceptibility to antitumor antibiotics. Price, Buck, Schlein, and Siminoff, 985

Oil, vegetable, effect on carcinogetic activity of 2-acetylamino-phenylalanines, Sugarl, Witting, Tschiymama, and Kummerow, 510

Oligomycin, collagen plate assay for, with KB cells. Renis, Johnson, and Bhuyan, 1196

—, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

—, inhibitory in broth dilution assay on KB cells. Bhuyan, Renis, and Smith, 1131

Organ culture, of human neoplastic tissue, influence of carbon dioxide on. Rovin, 384

Oriboca, new virus in tumor-bearing mice. Kruilwijk, Jacobs, Weisman, and Southam, 322

Orotic acid-7-C02, decarboxylation of, in treatment of mouse ascites tumors with asauridine. Bruenmer, Holland, and Sheebe, 113

Oryzias latipes, induction of lesions of notochord in. Levy, 441

Osteogenic sarcoma, rat, collagen content of. Giuliani, Grantham, and Clark, 1031

Osteogenic sarcoma 344, rat, inflammatory response to foreign body within. Mahoney and Leighton, 394

Ovariectomy, of rats with mammary tumors, purine metabolism in. Wheeler, Alexander, Dodson, and Briggs, 1909

Ovaries, hormones of, in mammary cancer induction by polynuclear hydrocarbons. Dao, 972

—, necrosis of corpora lutea, induced by 7,12-dimethylbenzanthracene. Wong, Warner, and Yang, 1038

—, tumor of, human, heterologous growth of, effect on enzymes in rat. Blackwood, Mateyko, and Mandl, 993

Oxygen, concentration, effect on carcinogetic induction by transplanted urinary bladder exposure to urethane in, mice. DiPaolo, 399

—, consumption, of human malignant and normal tissue. Macbeth and Bekesi, 244

—, tension, high, response of virus-induced leukemia in mice to. Libet and Siegel, 737

Papillomatosis, bovine, induced immunity of skin, vagina, and urinary bladder to. Olson, Luedke, and Brobst, 463

Parotid gland tumors, oncogenic properties of DNA from, in mice. Hays and Carr, 1919

Penicillin G, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Pentamycin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

Perfusion, and isolation, of rat hind limb, technic for. Turner, Tod, Francis, Greenhill, and Couves, 49

Pharmacology of methylglyoxal bis(guanylhydrazone) in rats, mice, rabbits, and dogs. Millich, Simpson, and Mulburn, 992

Phenol, effect on established cell lines cultivated in vitro. Pace and Elliott, 107

Phenolic compounds, hydrophobic, effect on electron transport in tumor mitochondrial extracts. Dietrich, 1827

Phenylalanine. See 4-Acetylamino substituted.

Phenylalanine-3,3′-diamide, tritiated, binding to soluble proteins of mouse skin. Abell and Heidelberger, 851

—, tritiated, preparation of. Giovannella, Abell, and Heidelberger, 925

Phosphatase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyaji, Murata, and Nagasuna, 1823

Phosphatases, of mouse ascites tumors and rat hepatomas. Figard and Greenberg, 361

—, of mouse skin, during normal and abnormal growth. Carruthers, 294

—, PM uptake by, of liver of tumor-bearing mice. Lee, Salmon, Mosser, and Loken, 1046

Phosphoglucomutase, in glycogen storage in tumors. Nigam, MacDonald, and Cantero, 131

Phosphogluconate dehydrogenase, changes in, in hamster cheek pouch during carcinogenesis. Scott, Morris, Reaikin, and Pakoskey, 857

Phosphoglyceraldehyde dehydrogenase, activity in Sarcoma 180 in mouse treated with 6-mercaptopurine. Fodor, Clarke, and Bodansky, 1830

Phosphoacetyl-CoA kinase, activity in Sarcoma 180 in mice treated with 6-mercaptopurine. Fodor, Clarke, and Bodansky, 1830

Phospholipids, of liver of tumor-bearing mice, uptake of PM by. Lee, Salmon, Mosser, and Loken, 1046

Phosphorus-P32, uptake by liver phosphatides of tumor-bearing mice. Lee, Salmon, Mosser, and Loken, 1046

Phosphorylation, oxidative, in ascites tumor mitochondria. Sauer, Martin, and Stots, 692

Pitt 89, heterotransplanted into hamsters, therapy of. Pierce, Midgley, and Verney, 563

Pitt 146, heterotransplanted into hamsters, therapy of. Pierce, Midgley, and Verney, 563

Pitt 147, heterotransplanted into hamsters, therapy of. Pierce, Midgley, and Verney, 563

Pituitary tumors, in rats and mice, adrenotropic activity of mammomatosatropic tumors. Takemoto, Yokoro, Furth, and Cohen, 917
Pituitary tumors—Continued

—, thyrotropic, mouse, effect of thyroxine analogs on. Grinberg, Tierney, and Werner, 835
—, thyrotropic, variant with gonadotropic activity. Messier and Furth, 884

Plant cucurbitacins, antitumor effect of, on ascites cells. Gallily, Shohat, Kalilah, Gitter, and Lavie, 1088

Plant tissue culture, chromosome number and mitotic frequency in. de Torok and Roderick, 174

Plant tumors, chromosome number and mitotic frequency of cultures of. de Torok and Roderick, 174

Plasma albumin, uptake of hydroxymethylated, in rat tissues. Starbuck and Busch, 1206

Plasma-cell neoplasm 70429, asasermine resistance in. Anderson and Jacques, 47

Pleasmyctoma 70430, mouse, inflammatory response to foreign body within. Mahoney and Leighton, 894

Plasmas glycoproteins, in various disease states and cancer. Macbeth and Bekesi, 1170

Plasma lactic dehydrogenase, activity, augmenting agent of, distribution and in vitro propagation. Yaffe, 573

Polymin B, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Polyoma tumors, in rats, morphology and frequency of. Kirsten, Anderson, Plats, and Crowell, 484

Polyoma virus, induction of mesenchymal tumors in rats by. Kirsten, Anderson, Plats, and Crowell, 484

—, relation to oncogenic properties of DNA from parotid gland tumors, in mice. Hay and Carr, 1319

Polysaccharide, in hamster cheek pouch during experimental carcinogenesis. Mort, Miyata, Murata, and Nagasuna, 1923

Porfomycin, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

—, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Potassium, subcellular pattern in liver carcinogenesis, in rat. Bresciani and Auricchio, 1284

Potassium cyanide, effect on tyrosine transport in Sarcoma 87 ascites cells. Chirigos, Fanning, and Guroff, 1349

Potassium fluoride, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Pregnancy, effect of oxygen concentration on carcinogenesis induced by transplacental exposure to urethan, in mice. DijI-Pso, 599

Presidential address, value of animal research. Dunn, 898

Proflerin, reticuloendothelial stimulation produced by, effect on metastases, in the rat. Fisher and Fisher, 478

Proteins, amino acid incorporation into, in rat liver after aminoacidonore treatment. Arrhenius and Hultin, 843

—, in interstitial fluid and mouse tumors. Burgess and Sylvén, 851

—, metabolism of rat liver, effects of thiocetamide on. Muramatsu and Busch, 1100

—, nuclear fraction, of Walker 256 carcinosarcoma. Busch, Hnilica, Chien, Davis, and Taylor, 637

—, soluble, triitated hydrocarbons bound to, of mouse skin. Abell and Heidelberger, 991

—, synthesis in rat livers, and during carcinogenesis or regeneration. Burke, 10

—, synthesis, relation to duplication of DNA in HeLa cells. Mueller, Kajiwara, Stubbfield, and Rueckert, 1084

—, tumor, effects of Cytoscan on, in leukemia L1210. Strezin and Nyhan, 1382

Protos vulgaris, lipopolysaccharide from, together with γ-globulin, effect on tumor growth. Antopol and Chysanthou, 89

Protozoa, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, susceptibility to antitumor antibiotics. Price, Buck, Schlein, and Siminoff, 885

Paclitaxel, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

—, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, with hadacidin, effect on. E. coli. Shigeura and Gordon, 1536

Pulmonary. See also Lung

—, adenomas, in mice, electron microscopy of. Svoboda, 1197

Purine analogs, effects on growth of H.Ep. #1 and chick embryo fibroblast cells. Rich, Perez, and Edidinoff, 8

Purine antagonists, in chemotherapy in mice. Montgomery, Schabel, and Skipper, 594

Purines, anabolic and catabolism of, by hepatomas, in rat. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

—, catabolism of, by regressing tumors. Wheeler, Alexander, Dodson, and Briggs, 1206

—, synthesis, effect of hadacidin on. Shigeura and Gordon, 1536

—, urinary, in leukemia, clinical. Park, Holland, and Jenkins, 469

Pyromycin, effect on duplication of deoxyribonucleic acid. Mueller, Kajiwara, Stubbfield, and Rueckert, 1084

—, with hadacidin, effect on. E. coli. Shigeura and Gordon, 1536

Pyromycin-di-HCl, antitumor effect tested on HeLa and protazoan cells. Price, Buck, Schlein, and Siminoff, 885

Pyridine nucleotides, effect of induced synthesis of, in vivo, on metabolism of ribonucleic acid. Revel and Mandel, 456

Pyridoxine-deficient mice, host defense mechanisms in regression of Sarcoma 180 in. Mihich, 418

Pyrimidines, biosynthesis of, feedback inhibition in liver and hepatoma. Bresnick, 1246

—, fluorinated, inhibition of DNA thymine synthesis. Mukherjee and Heidelberger, 815

—, synthesis of, effect of hadacidin on. Shigeura and Gordon, 1356

Pyruvate kinase, in glycogen storage in tumors. Nigam, Macklin, and Cantero, 131

Rabbit, benzpyrene hydroxyflase activity in duodenum of. Wattenberg, Leong, and Strand, 1190

—, cortisone action in increasing metastases of tumor. Zeidman, 501

—, differential pulmonary response to tumor cell emboli in. Potter, Buttazzini, and Cozzarelli, 1202

—, N-hydroxylation of δ-acetylamino-3-fluorene in. Irving, 867

—, toxic and pathologic effects of methylglyoxal-bis{glyoxalhydrzone) in. Milich, Simpson, and Mulher, 862

Radiation. See also Irradiation and X-radiation

—, atomic, comments on report of United Nations Scientific Committee on effects of. Upton, 1139

Raromycin, antitumor effect tested on HeLa and protazoan cells. Price, Buck, Schlein, and Siminoff, 885

Resistance, against iso transplantation of lymphomas. Klein, Spjeren, and Klein, 953

—, induced, against Gross lymphoma, cytotoxic and neutralization tests on serum of mice. Slettenmark and Klein, 947

—, induced host, to transplantable mouse glioma. Scheinberg, Levine, Suzuki, and Terry, 67

Resistant sublines, of ascites tumor cells, electron microscopy of. Hirono and Kojima, 824

Respiratory inhibition, induced in Ehrlich ascites tumor cells by 3-glucose and 3-deoxy-δ-glucose in. Ibsen, Coe, and McKe, 182

Reticuloendothelial stimulation, effect on hepatic metastases, in the rat. Fisher and Fisher, 478
Index to Volume 22

Reuber H-35 hepatoma, anabolism and catabolism of purines by. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

—, fluorescent antibodies in cancer research. Glück, 885
—, mechanisms of action of cytotoxic alkylating agents. Wheeler, 651
—, of spontaneous neoplasms in amphibians. Bulls, 1142
—, role of folate coenzymes in cellular division. O'Brien, 267
—, significant biochemical effects of hepatocarcinogens in the rat. Reid, 398
—, surface properties of cancer cells. Abercrombie and Ambrose, 525

Rhodomyosarcoma, transplantable metastasizing, in rat. Maddock, Kury, and Riley, 291

Ribonucleic acid. See also Nucleic acids.
—, effect of induced synthesis of pyrimidine nucleotides in vivo on metabolism of. Revel and Mandel, 456
—, incorporation of aminouracil mustard into, in tissues of tumor-bearing rats. Byvoet and Busch, 249
—, 6-methylaminopurine utilized for synthesis of. Jamison, Huff, and Gordon, 192

Ridgway osteogenic sarcoma, mouse, effect of actinogen on, in vivo. Bradner and Sugiura, 167

Rous sarcoma virus, and changes in chick embryo cells. Hampton and Eidinoff, 1061

RP2-L, nuclear protein fraction of Walker 256 carcinosarcoma. Busch, Hnilica, Chien, Davis, and Taylor, 637

Sarcolysin. See Melphalan.

Sarcoma, human, in tissue culture, morphologic and histochemical features of. Spatz, 914

Sarcoma 37, ascites cells, tyrosine transport in. Chirigos, Fanning, and Guroff, 1949
—, ascitic form, effects of uncoupling agents on fatty acid oxidation by. Ellis and Scholefield, 305
—, enzymes involved in glycosgen storage in. Nigam, MacDonald, and Cantero, 181
—, solid, mouse, glucose, lactate, and lactate dehydrogenase activity in. Burgess and Sylvén, 581

Sarcoma 180, ascites, mouse, phosphatides of. Figard and Greenberg, 581
—, cultured, chromosomal constitution and amethopterin resistance in. Hakala and Ishihara, 987
—, effect of actinogen on, in vivo, in mice. Bradner and Sugiura, 167
—, effect of curcubitacin on. Gallily, Shohat, Kalish, Gitter, and Lavie, 1088
—, effect of 6-diazo-5-oxo-L-norleucine on nucleic acid metabolism in. Barclay, Garfinkel, and Phillipps, 809
—, effect of lipopolysaccharide and γ-globulin on. Antopol and Chryssanthou, 89
—, growth in, on mice. Kruwil, Jacobs, Weissman, and Southam, 922
—, effect on adrenal nucleic acids, in mice. Hilf, Cowett, Johnson, and Borman, 449
—, glycoysis by, in mice treated with 6-mercaptopurine. Fodor, Clarke, and Bodansky, 1290
—, growth in adenectomized mice. Benton, 1280
—, host defense mechanisms in regression of, in pyridoxine-deficient mice. Mihich, 218
—, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850
—, mouse, effect of azauridine on. Bruehmer, Holland, and Sheehy, 118
—, used in isolation of actinogen, antitumor agent. Schmitz, Bradner, Gourewitch, Heinemann, Price, Levin, and Hooper, 163

Sarcoma Black, effect of curcubitacins on. Gallily, Shohat, Kalish, Gitter, and Lavie, 1088

Sarcoma MA37, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850
—, mouse, effect of actinogen on, in vivo. Bradner and Sugiura, 167

Sarcoma T241, lysozyme in kidney and spleen of mice bearing. Cappuccino, Reilly, and Winston, 850

Schneidesmus basiliensis, in comparative studies of diverse in vivo cell systems. Johnson, Simpson, and Cline, 617

Sensitivity, collateral, by combination chemotherapy. Paiagen, 1290

Serum, heterologous, effect on modal distribution of cell variants. Murphy, Bullis, Landau, and Acosta, 906
—, of mice with induced resistance against Gross lymphomas, cytotoxic tests on. Slettemark and Klein, 947

Serum albumin, catabolism of, by mitochondrial fraction from Novikoff hepatoma. Penn, 388

Serum globulins, and bronchogenic carcinoma. Netleshawa, 696

Sindbis, new virus in tumor-bearing mice. Krulwich, Jacobs, Weissman, and Southam, 382

Skin, induced immunity of, to bovine papillomatisis. Olson, Luedke, and Brobst, 463
—, mouse, binding of tritiated hydrocarbons to soluble proteins of. Abell and Heidelberg, 881
—, mouse, carcinogenic activities of various derivatives of dibenzanthracene on. Heidelberg, Baumann, Griesbach, Ghobar, and Vaughan, 78
—, mouse, cocarcinogenic effect of oral griseofulvin to methylcholanthrene-induced cutaneous tumors. Barich, Schwartz, and Barich, 83
—, mouse, fatty acid composition during growth. Caruthers, 294
—, response of epithelium to subcutaneously transplanted tumor, in mouse. Arghys and Argyris, 73
—, survival of skin homografts, in methylcholanthrene-treated mice and mice with spontaneous mammary cancers. Linder, 380

Sodium, subcellular pattern in liver carcinogenesis, in rat. Bresciani and Aucriochio, 1864

Sodium arsenate, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Sodium azide, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1349
—, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Sodium cyanide, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Sodium fluoracetate, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Sodium iodacetate, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1349

Sodium malonate, effect on tyrosine transport in Sarcoma 37 ascites cells. Chirigos, Fanning, and Guroff, 1349

Spleen, elevated lysozyme in extracts of, in tumor-bearing animals. Cappuccino, Reilly, and Winston, 850
—, mouse, enzymatic degradation of asaerine by. Jacques and Sherman, 56
—, normal, mouse or rat, inflammatory response to foreign body within. Mahoney and Leighton, 394
—, uptake of hydroxyethylated rat albumin by. Starbuck and Busch, 1306

Spruce, white, chromosomal number and mitotic frequency of cultures of. de Torok and Roderick, 174

Starvation, effect on benzyrene hydroxylase activity in gastrointestinal tract. Wattenberg, Leong, and Strand, 1190
—, effect on uracil incorporation into liver and tumor RNA, rat. Cantarow, Williams, and Paschikis, 1021
Cancer Research Vol. 22, December 1962

Steroids. See also specific steroids.
—, glucocorticoid activity of, relation to metastasis, in mouse. Albert and Zeidman, 1957

Stickiness, cellular, chemical factors in. Berwick and Coman, 1962

Strain. See also under specific name of cell strain, e.g., HeLa.
—, modal distribution of cell variants, of human epithelial cells. Murphy, Bullis, Landau, and Acosta, 906

Strain Bi:I cells, human, culture of. Norry, Erickson, and Mellgren, 147

Strain Bi:II cells, human, culture of. Norry, Erickson, and Mellgren, 147

Strain C3:II Cells, human, culture of. Norry, Erickson, and Mellgren, 147

Strain C3:II cells, human culture of. Norry, Erickson, and Mellgren, 147

Strain L cells, effects of acetone and phenol on. Pace and Elliott, 107

Strain NCTC 1742, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Streptomycin, antitumor effect tested on HeLa and protoson cells. Price, Buck, Schlein, and Siminoff, 885

Streptomycetes, antitumor agent from, on Sarcoma 180 and tumor spectrum. Bradner and Sugita, 167

—, antitumor agent from, properties of. Schmits, Bradner, Gouvevitch, Heinemann, Price, Lein, and Hooper, 183

Streptomycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Streptonigrin, antitumor effect tested on HeLa and protoson cells. Price, Buck, Schlein, and Siminoff, 885

Streptovitacin A, antitumor effect tested on HeLa and protoson cells. Price, Buck, Schlein, and Siminoff, 885

Sucinic-cytochrome c reductase, effect of hydrophobic phenolic compounds on. Dietrich, 1937

Succinic dehydrogenase, activity in hamster cheek pouch during experimental carcinogenesis. Mori, Miyagi, Murata, and Nagauna, 1937

Sulfadiazine, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Sulfamerazine, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Sulfapyridine, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Sulfathiazole, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Sulfadiazine, nickel and cobalt, carcinogenicity in rats and mice. Gilman, 198

Sulfonic esters, mechanisms of action as cytotoxic alkylating agent, review. Wheeler, 651

Supernatant fraction. See Cell fractionation.

Supplements, Cancer Chemotherapy Screening Data XIII. No. 1, Part 2, CS 1

—, Cancer Chemotherapy Screening Data XIV. No. 4, Part 2, CS 157

—, Cancer Chemotherapy Screening Data XV. No. 6, Part 2, CS 863

—, Cancer Chemotherapy Screening Data XVI. No. 7, Part 2, CS 559

—, Cancer Chemotherapy Screening Data XVII. No. 8, Part 2, CS 749

—, Cancer Chemotherapy Screening Data XVIII. No. 11, Part 2, CS 919

Symposium, experimental and therapeutic modification of mitosis. Biesele, 779

TEM. See Triethylenemelamine.

Terramycin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

TESPA. See N,N',N''-Triethylenetriphosphamide.

Testosterone, effect on spontaneous and methylcholanthrene-induced leukemia in mice. Liebelt and Liebelt, 1180

—, given to rats with mammary tumors, purine metabolism in. Wheeler, Alexander, Dodson, and Briggs, 1509

Tetracycline HCl, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, susceptibility to antitumor antibiotics. Price, Buck, Schlein, and Siminoff, 885

Tetramerin, effect on development of sublines of leukemia, rat. Winkelman, 899

THEORIES, of changing cell populations, sensitive and resistant leukemic cells. Friedkin and Goldin, 607

Thioacetamide, effects on protein metabolism of rat liver. Muramatsu and Busch, 1100

6-Thioguanine, effect on growth of H.Ep. F1 and chick embryo fibroblast cells. Rich, Peres, and Edinoff, 3

6-Thioguanosine, effect on growth of H.Ep. F1 and chick embryo fibroblast cells. Rich, Peres, and Edinoff, 3

ThioTEPA. See N,N',N''-Triethylenetriphosphamide.

Thorium dioxide, colloidal, as carcinogen in rats and mice. Gilman and Ruckerbauer, 159

Thiorstratin. See Thorium dioxide.

L-Threonine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Thymidine, in vitro incorporation into human tumor tissue. Wollberg and Brown, 1113

Thymidine-H3, autoradiography with, in regenerating rat liver. Grisham, 942

Thymidine synthesis, from tumor lines resistant to 5-fluorouracil. Häggmark, 568

Thymomomas, epithelioid, induced by DNA from parotid gland tumors, in mice. Hayes and Carr, 1519

Thymus, in induction of malignant lymphoma by 7,12-dimethylbenz[a]anthracene in mice. Rappaport and Baroni, 1067

Thyrotropic tumors, mouse, effect of thyroxine analogs on. Grinberg, Tierney, and Werner, 885

—, variant with gonadotropic activity. Messier and Furth, 894

Thyroxine analogs, effect on growth and secretion of pituitary thyrotropic tumors. Grinberg, Tierney, and Werner, 885

Tissue culture, cancer cell in vitro, review. Paul, 481

—, chemicals required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

—, chemotherapeutic agents in diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

—, collagen plate assay for cytotoxic agents against KB cells. Bhuyan, Renis, and Smith, 131

—, DNA synthesis in chromosomes of HeLa cells. Stubblefield and Mueller, 1091

—, DNA synthesis in HeLa cells, effect of puromycin. Mueller, Kajiwara, Stubblefield, and Rueckert, 1084

—, effects of acetone and phenol on cell lines in vitro. Pace and Elliott, 107

—, human cell strains of malignant and benign origin from same individual. Norry, Erickson, and Mellgren, 147

—, induced and spontaneous cell alterations in human cell culture. Ludovici, Ashford, and Miller, 789

—, modal distribution of cell variants of human epithelial cells. Murphy, Bullis, Landau, and Acosta, 906

—, of cells from human tumors, chromosome constitution of. Ishihara, Moore, and Sandberg, 375

—, of chick embryo cells and Rous sarcoma virus. Hampton and Edinoff, 1061
Uricil reductase, activity in liver of tumor-bearing rats. Wu and Bauer, 1230

Urethan, and cigarette smoke condensate, carcinogenic effect of. DiPaolo and Sheee, 1088
—, mutipotential carcinogen in mice. Tannenbaum and Maltoni, 1102
—, mutipotential carcinogenicity of. in rat. Tannenbaum, Vesselinovitch, Maltoni, and Mitchell, 1389
—, tested on H.Ep. #3 tumor in newborn Swiss mice. Merker, Bowie, and Anido, 352
—, transplacental exposure to, effect of oxygen concentration on carcinogenesis induced by, in mice. DiPaolo, 299

Uridine, in vitro incorporation into human tumor tissue. Wollberg and Brown, 1113

Uridine kinase, during development of resistance to 5-fluorouracil. Reichard, Skold, Klein, Révész, and Magnusson, 235
—, in Ehrlich ascites cells. Skold, Magnusson, and Révész, 352

Uridine phosphorylase, during development of resistance to 5-fluorouracil. Reichard, Skold, Klein, Révész, and Magnusson, 235

Urinary glycoproteins, in human leukemia. Tunis and Weinfield, 764

Urinary metabolites, of 2-acetylaminofluorene in rhesus monkey. Enomoto, Lotlikar, Miller, and Miller, 1826

Urinary purines, in leukemia, in human. Park, Holland, and Jenkins, 469

Uterine adenocarcinoma 94153, mouse, inflammatory response to foreign body within. Mahoney and Leighton, 334

Uterus, cervix of, growth potentials of precancer of, in vitro and in cortisone-treated hamsters. Mellgren, Boeryd, and Hagan, 159

Vagina, induced immunity of, to bovine papillomatosis. Olson, Luedke, and Brobst, 463

Valacidin, antitumor effect tested on HeLa and protozoan cells. Price, Buck, Schlein, and Siminoff, 885

L-Valine, required to induce alterations in human cell culture. Ludovici, Ashford, and Miller, 797

Vancocin, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Velban, in comparative studies of diverse in vitro cell systems. Johnson, Simpson, and Cline, 617

Versenate, disodium, effect on cellular adhesion and stickiness. Berwick and Coman, 992

Versene, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

Vincaleukoblastine, effect on primary explants of human neoplasms. Walker and Wright, 1967

Viruses, Gross, lymphomas induced by, resistance against, in mice. Slettenmark and Klein, 947
—, induction of mesenchymal tumors in rats by polyoma virus. Kirsten, Anderson, Plats, and Crowell, 454
—, leukemia induced by, in mice, response to high oxygen tension. Libet and Siegel, 757
—, particles in electron microscopy of myeloid leukemias in mice. Parsons, Upton, Bender, Jenkins, Nelson, and Johnson, 728
—, Roux sarcoma, and changes in chick embryo cells. Hampton and Eidinoff, 1061
—, six new, in tumor-bearing mice. Kruilwich, Jacobs, Weisman, and Southam, 382

Vitamin analog, 6-aminonicotinamide, tested in collagen plate assay on KB cells. Bhuyan, Renis, and Smith, 1131

VX2 carcinoma, rabbit, in vitro microscopy in study of metastasis. Potter, Buttarazzi, and Cozzarelli, 1202

Wagner osteogenic sarcoma, mouse, effect of actinogen on, in vivo. Bradner and Sugita, 167

Walker carcinosarcoma 256, catabolism of xanthine and uracil in rats bearing. Wu and Bauer, 1230
—, collagen content of. Gullino, Grantham, and Clark, 1081
—, distribution of tetraphenylphosphinesulfonate in rats bearing. Winkelman, 589
—, effect of actinogen on, in vivo. Bradner and Sugita, 187
—, effect of dietary restriction of folic acid on growth of, in the rat. Rosen and Nichol, 485
—, effect of ethylhydrazinophosphoramide on. Croasile, Kuh, and Allison, 549
—, enzymes involved in glycogen storage in. Nigam, MacDonald, and Cantero, 181
—, experimental study of necrosis in. Schatten, 286
—, hormonal and nutritional effects on uracil incorporation into RNA of. Cantarow, Williams, and Paschik, 1021
—, induced metastases of, in the rat, by Profermin. Fisher and Fisher, 478
—, influence of exercise on growth of, in rat. Hoffman, Paschikis, DeBias, Cantarow, and Williams, 597
—, intracellular distribution of 5-bis(2-chloroethyl)aminouracil-2-C14 in tissues of rats bearing. Byvoet and Busch, 449
—, mitotic rates of. Bertalanfy and Lau, 627
—, nuclear protein fraction of. Busch, Hnilica, Chien, Davis, and Taylor, 437
—, response to perfusion with triethylenethiophosphoramide, in rat hind limb. Turner, Tod, Francis, Greenhill, and Couves, 48
—, uptake of hydroxyethylated rat albumin by. Starbuck and Busch, 1406

Xanthine, catabolism in tumor-bearing rats. Wu and Bauer, 1230

Xanthine-8-CH3, anabolic and catabolism by minced rat tissues. Wheeler, Alexander, Dodson, Briggs, and Morris, 769

Xanthine oxidase, activity in liver of tumor-bearing rats. Wu and Bauer, 1239

Xanthomyycin, inhibitory activity against KB cells in broth and collagen plate assays. Bhuyan, Renis, and Smith, 1131

X-irradiation. See also Irradiation and Radiation
—, as diagnostic procedure in heterotransplants of H.Ep. #3. Merker and Hurley, 646

Yoshida ascites sarcoma, electron microscopy of, and resistant subline. Hiroo and Kojima, 288
N. B. C.
DELIVERS
BIOCHEMICALS,
NOT
EXCUSES!

Most labs are near highways. Or seaports. Or airports. But if yours isn’t, we’ll hire a Tennessee Walker. That way, your order doesn’t get jostled. N.B.Co. also makes sure that the order you place is the order you get. Careful checking and accurate mailing procedures insure that. When you need biochemicals fast, a call to MOntrose 2-0214, Cleveland, Ohio, starts them moving. Practically 24 hour delivery time in the U.S.A., slightly longer anywhere else. And because of N.B.Co.’s world-wide volume, you still pay less for pure biochemicals. Send for our 2600-item catalogue today. Chances are, we have what you want and can get it to you . . . fast!

NUTRITIONAL BIOCHEMICALS CORPORATION
21010 Miles Avenue • Cleveland 28, Ohio

Send for our free August, 1962 Catalog containing more than 2600 items. Fill out coupon and mail today for your copy.

Name__________________________ CR
Organization_____________________
Address__________________________
City______________________________ Zone ________
State______________________________

BASIC PROBLEMS IN NEOPLASTIC DISEASE
Edited by Alfred Gellhorn and Erich Hirschberg
Correlating for the first time recent cancer-related findings in genetics, biochemistry and medicine, this significant treatise compiles the research efforts of twelve eminent authorities and their views on the basic problems of neoplastic disease.

The result of the symposium sponsored by the College of Physicians and Surgeons commemorating the fiftieth anniversary of the Institute for Cancer Research, Columbia University, and the tenth anniversary of Francis Delafield Hospital, Basic Problems in Neoplastic Disease records major achievements in the areas of Nucleic Acid Structure and Synthesis, Viral and Genetic Studies, Protein Synthesis, and Antibody Structure.

The Contributing Authors Are:

Christian B. Anfinsen Rollin D. Hotchkiss Boris Magasanik
Paul Berg Jerard Hurwitz Jacques Monod
Seymour S. Cohen Fred Karush Severo Ochoa
Renato Dulbecco Fritz Lipmann R. R. Porter

Some of the Topics Presented Are:
Virus Multiplication in the Study of Inheritance and Differentiation
The Metabolic Regulation of Protein Synthesis
Studies on the Contribution of Nucleic Acids to the Specificity of Protein Synthesis
Aspects of the Interaction between Virus and Cells Leading to Neoplastic Transformation

267 pages Illustrated $8.00

Columbia University Press / 2960 Broadway, New York 27, N.Y.
CANCER RESEARCH

BACK ISSUES

ARE AVAILABLE NOW

PAST NUMBERS with a few exceptions may be purchased.

FOR INFORMATION including costs on Volumes I (1941) through VIII (1948) write to:

Johnson Reprint Corporation
111 Fifth Avenue
New York 3, New York

VOLUME IX (1949) and all following issues may be ordered at $2.50 each from:

Special Sales Department
University of Chicago Press
5750 Ellis Avenue
Chicago 37, Illinois

SUBSCRIPTIONS may be ordered from the University of Chicago Press at $15.00 for one year in the United States, $15.50 in Canada and Pan America, and $16.00 elsewhere.
INSTRUCTIONS FOR AUTHORS

Manuscripts for Cancer Research must represent new and original contributions not previously published and, if accepted, not to be published elsewhere. They must be typed, double-spaced (including references, footnotes, and tables), with ample margins, on bond paper. The original and one clear copy of the entire manuscript, including figures and charts, must be submitted. All pages should be numbered consecutively. Every paper must begin with a concise summary of the essential results of the investigation.

Supplements on Cancer Chemotherapy Screening Data. Authors who wish to submit data for publication in these supplements, which appear at least three times a year, are urged to consult the Instructions for the preparation of such material, found on the inside back cover of most of these supplements.

Critical reviews on subjects dealing with cancer and allied fields will be considered for publication. Such reviews should attempt to correlate the various approaches to a problem so as to indicate the trends and emphasize the aspects that require further clarification. Critical analyses of the pertinent issues and expressions of opinions are encouraged.

The title of the paper should be as short as is compatible with a clear indication of the subject matter. The title (with subtitle, if any) must not exceed 150 characters. Chemical formulas should not be included in the title. The title of the paper, author (or authors), location, and any acknowledgments should appear on a separate page.

Footnotes within the text should be numbered consecutively and appear on a separate sheet.

Tables should be typed, double-spaced throughout, on separate sheets and should be numbered. Each must have a brief, descriptive title. Tables should be arranged for vertical position on the page. Every column must be supplied with an appropriate heading, and units of measure must be clearly indicated. The same data may be presented in either chart or tabular form, but not in both. Tables should be intelligible without reference to the text.

Illustrations: The preparation of photographs, charts, and graphs is particularly important, and authors are requested to follow carefully the directions given below.

Halftone illustrations (photomicrographs and photographs) are designated figures and are printed as plates at the end of each article. Figures in moderate numbers will be accepted if they are of good technical quality and essential for the clarity of the presentation. Figures should be trimmed to show only the essential features; all parts of each figure must be in sharp focus. Only clear, glossy photos should be submitted. Mount all photographs on white cardboard (8½ × 11 inches in size), with the edges abutting tightly. The engraver will then draw a thin line between adjoining figures. Place as many together as will make a plate not to exceed 6 × 8½ inches. Each figure should be numbered consecutively. Photographs of plates should accompany the second copy of the manuscript. Legends for plate figures should be typed separately, in consecutive order, on standard-sized paper with the heading “Legends for Figures.”

Line-cut illustrations (graphs and charts) are designated charts and are printed in the text. These should be numbered in consecutive order. Charts should be planned so as to eliminate waste space; they must be ruled off close to the area of the curves, and descriptive matter must not extend beyond the curves. Charts must be so prepared that no letter or figure will be less than 2 mm. high after reduction. The majority of charts can be reduced to a one-column (3-inch) width, but larger ones are permissible when many data are included in one chart. Original line drawings on high-quality white drawing paper or board, blue tracing cloth, or coordinate paper printed in blue should be used. Only India ink should be used for drawing or lettering. Photographs of the charts should accompany the second copy of the manuscript. Legends for each chart should be typed separately in consecutive order on standard-sized paper with the heading “Legends for Charts.”

The over-all size of mounted charts and plates must not exceed 8½ × 11 inches. When original drawings exceed this size, photographed reductions must be sent.

References must be typed double-spaced and should include, in order: author, title, journal abbreviation (Chemical Abstracts form), volume number in Arabic numerals, inclusive pages, and year. Book references should give: author, title, pages, edition number, city, publisher, and year. All references should be checked with the original publications and must be arranged in alphabetical order. Each number in the references is to refer to only one paper. Unpublished data and personal communications may not be included in “References” but must be listed as footnotes. For example of the correct style, refer to any current issue of Cancer Research.

Changes in proof: Any but minor changes from the manuscript which are made in proof will be billed to the author.

Reprints may be ordered before publication, according to a schedule of prices accompanying the galley proof of the article.

Manuscripts and correspondence related to contributions should be addressed to: Dr. Harold P. Rusch, Editor, Cancer Research, McArdle Memorial Laboratory, Madison 6, Wisconsin.

INFORMATION FOR SUBSCRIBERS

All subscriptions and business inquiries should be addressed to the publishers, The University of Chicago Press, 5750 Ellis Avenue, Chicago 57, Illinois.
SCIENTIFIC JOURNALS of the UNIVERSITY OF CHICAGO PRESS
will help you keep abreast of
new books and publications
• current events in your field
• important research
• significant study and theory

CANCER RESEARCH
A monthly journal of medical investigation in all aspects of cancer phenomena, sponsored by the American Association for Cancer Research and affiliated organizations. 1 year subscription $15.00.

THE JOURNAL OF GEOLOGY
An international journal of the earth sciences presenting original studies within the entire field of geology, published bimonthly. 1 year subscription $10.00.

THE JOURNAL OF INFECTIOUS DISEASES
A bimonthly journal of original medical investigation dealing with the general phenomena, causation, and prevention of infectious diseases. 1 year subscription $12.00.

PERSPECTIVES IN BIOLOGY AND MEDICINE
A quarterly journal communicating new ideas in the biological and medical sciences. 1 year subscription $7.00.

PHYSIOLOGICAL ZOOLOGY
A quarterly journal of original research in the physiological aspects of all fields of zoology. 1 year subscription $10.00.

Write for prices for foreign subscriptions and further information
THE UNIVERSITY OF CHICAGO PRESS
5750 ELLIS AVENUE · CHICAGO 37, ILLINOIS