Oral Griseofulvin: A Cocarcinogenic Agent to Methylcholanthrene-induced Cutaneous Tumors*

Louis L. Barich, Jan Schwarz, and Donna Barich

(Clinical Laboratories, Jewish Hospital, Cincinnati; and Departments of Dermatology and Pathology, College of Medicine, University of Cincinnati, Cincinnati, Ohio)

SUMMARY

Since certain antitumor drugs also arrest mitosis in metaphase, an attempt was made to determine the effect of oral griseofulvin on methylcholanthrene-induced cutaneous tumors in mice. Contrary to expectations, mice on large doses (1000–1500 mg/kg) of griseofulvin subjected to methylcholanthrene applications had a shorter tumor lag period and developed more and larger tumors than did mice not receiving griseofulvin but receiving similar amounts of methylcholanthrene. A cocarcinogenic effect was also noted in mice that received lower doses (10–15 mg/kg) of griseofulvin for 6 weeks prior to, during, and subsequent to methylcholanthrene applications, but not in mice that received this dosage for 4 weeks prior to, during, and subsequent to methylcholanthrene application.

Griseofulvin is an antibiotic isolated in 1939 by Oxford et al. (4) from a Penicillium mold. Gentles (2) in 1958 used it on experimental dermatophytosis in guinea pigs. In 1958, Paget and Walpole (5) noted the cytotoxic effect of large intravenous doses of griseofulvin in rats, resulting in arrest of mitosis in metaphase in certain organs—e.g., bone marrow, seminal and intestinal epithelium. Schwarz and Loutzenhizer (7) have shown that prolonged high oral doses of griseofulvin can cause atrophy of mouse testes. Roth and Blank (6) have discussed the oral administration of griseofulvin and its subsequent incorporation into the keratinized tissues of the skin, hair, and nails.

Many of the currently used antitumor drugs arrest mitosis in metaphase, and it was hoped that griseofulvin might have an antitumor effect when the carcinogenic agent methylcholanthrene was applied to the epidermis of mice. A pilot experiment was performed, and preliminary findings are reported (1). Contrary to this expectation, it was found that excessively large oral doses of griseofulvin had a tumor-promoting effect upon methylcholanthrene-induced tumors (1). The following experiments confirm this.

MATERIALS AND METHODS

Swiss-Webster strain male mice from Huntingdon Farms in Philadelphia, weighing 17–25 gm. prior to being placed on their respective diets, were used. Rockland Rat Diet, produced by the A. E. Staley Manufacturing Co., Decatur, Ill., was used; griseofulvin was supplied by the Schering Corporation; 3-methylcholanthrene was obtained from Mann Research Laboratories.

Two levels of griseofulvin were given. Mice on a 1 per cent griseofulvin mouse food mixture would be in a dosage range of 1000–1500 mg/kg/day depending upon their size and food consumption. Mice on a 0.01 per cent griseofulvin mouse food mixture would be in a dosage range of 10–15 mg/kg/day and would correspond to customary human dosage. Another group of mice received only a regular mouse food diet. All mice had the hair of the lower back clipped with an electric clipper a few days prior to the start of methylcholanthrene application.

Mice in Experiment 1 received their respective diets for 4 weeks prior to, during, and subsequent

* This study was supported in part by grants from the National Institutes of Health (CY-5071 and 5368), McNeil Laboratories, Inc., the Schering Corporation, and the American Research Foundation.

Received for publication July 19, 1961.
to being placed on twice-weekly applications of 0.05 cc. of 0.5 per cent methylcholanthrene in acetone solution, for a total of eight applications, to the epidermis of the lower back.

Mice in Experiment 2 received their respective diets for 6 weeks prior to, during, and subsequent to being placed on twice-weekly applications of 0.05 cc. of 0.5 per cent methylcholanthrene in acetone solution, for a total of seven applications, to the epidermis of the lower back.

Mice in Experiment 3 received their respective diets for 6 weeks prior to, during, and subsequent to being placed on twice-weekly applications of 0.04 cc. of 0.5 per cent methylcholanthrene in acetone, for a total of seven applications, to the epidermis of the lower back.

RESULTS AND DISCUSSION

The results are summarized in Table 1. All three experiments showed that the mice on 1 per cent griseofulvin had the shortest tumor latent period, largest percentage of mice developing tumors, most tumors per mouse, and largest tumors application, as in Experiment 1, did not exhibit enhancement of tumor growth.

In our control group not receiving methylcholanthrene, there are 37 mice on 1 per cent griseofulvin, 27 on 0.01 per cent griseofulvin, and 25 on regular mouse food. These mice have been on their respective diets for 92 days, and not a single spontaneous tumor has appeared. These mice had the hair of the lower back clipped with an electric clipper. It is too early to be certain, but it appears that the mice on the 1 per cent griseofulvin diet do

![Fig. 1.—Figure 1 shows the difference in size and number of typical tumor formations in mice receiving 1 per cent and in mice not receiving griseofulvin 50 days after the start of methylcholanthrene applications in Experiment 1. The mouse on 1 per cent griseofulvin had at least twenty individual tumors that, upon growing, became one huge, confluent tumor mass. Microscopic sections of the tumors on these two mice show hyperkeratotic papillomas.](Image)

![Fig. 2.—Microscopic sections from the same mice as in Figure 1, mounted on one slide. Large confluent papillomatous tumor mass from griseofulvin-fed animal contrasts with discrete papilloma of control mouse (arrow). H. & E. ×4.5.](Image)
not have their hair growing back as rapidly as do the mice on regular food; apparently the hair’s anagen phase is affected.

Tumors in the 1 per cent griseofulvin group receiving methylcholanthrene were more prone to develop in mice that had very little of their hair regrown after being clipped. A speculation would be that hair, which is a very active area of mitosis, will have its mitotic pattern arrested by griseofulvin and enters a telogen phase. Methylcholanthrene enters via the hair follicle, and perhaps the hair is not growing to carry the carcinogenic agent outward, and there is an accumulation of the carcinogen in the hair follicle. Wolbach (8) states that carcinogenic agents develop papillomas from arrested hair papillae and that cancers develop only from these papillomas. Hair in the anagen phase has a protective effect against tumor induction by chemical carcinogens.

There were many more fights, bites, and pyodermas in the group not receiving griseofulvin; and when they developed tumors it was usually at the sites of skin breakage. We have found that mice in cages not receiving griseofulvin and not having skin breakage will have no or only very small tumors.

Previous experience (1) shows that at about 9 weeks after methylcholanthrene applications, squamous-cell carcinomas can develop in the 1 per cent griseofulvin group.

Wolf (9) defines a cocarcinogen as a substance which, though not in itself carcinogenic, can enhance tumor incidence and shorten the latent period when applied together with or shortly after the carcinogen. Large oral doses of griseofulvin, which eventually find their way to the skin, act as tumor-promoters when methylcholanthrene is applied to the epidermis of mice. McNall (3) suspects that griseofulvin exerts a direct interference with the synthesis of nucleic acids. Possibly griseofulvin, in affecting the mitosis of the cell and the nucleic acids, has done something to make the cell more vulnerable to a carcinogenic agent.

REFERENCES
Oral Griseofulvin: A Cocarcinogenic Agent to Methylcholanganthrene-induced Cutaneous Tumors

Louis L. Barich, Jan Schwarz and Donna Barich


Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/22/1_Part_1/53

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.