Heightened Immunity and Susceptibility toward Cheek Pouch Heterografts of a Mouse Leukemia in Syrian Hamsters*

RICHARD A. ADAMS

(Laboratories of Immunogenetics, The Children's Cancer Research Foundation, and Department of Pathology, Harvard Medical School, The Children's Hospital, Boston, Mass.)

SUMMARY

Heterotransplantation of 1.0×10^7 AK-4 cells of AKR mice into cheek pouches of normal and cortisone-treated adult Syrian hamsters resulted in measurable but transient growth; small vascular tumors which appeared at 5–7 days regressed completely by 10–14 days. Noncortisonized hamsters vigorously rejected second-set grafts, which failed to vascularize, in considerably less time, in either the previously exposed or contralateral pouch. Hamsters treated with cortisone during and following rejection of the first-set graft also vigorously rejected second-set grafts at 2 weeks following first-set grafting but accepted second-set grafts, in 50 per cent of the instances at 4–6 weeks, in either the previously exposed or contralateral pouch. This acceptance of second-set grafts was in contrast to the failure of hamsters pretreated with cortisone alone to support the growth of first-set grafts.

Successful second-set grafts in cortisone-treated hosts grew progressively for 10–14 days, after which interval the grafts necrotized and ulcerated. Despite evidence of locally infiltrating cheek pouch tumors at death at 4–6 weeks, in no instance was disseminated leukemia observed. Retransplantation of hamster-borne tumors to mice, however, resulted in selective death of AKR mice with disseminated disease, indicating retention of strain-specificity and the capacity of the cells to generalize.

The possible relation between heightened susceptibility to AK-4 heterografts in the hamster pouch, and tumor homograft enhancement in the mouse is discussed, as is the significance of this study with respect to the concept of “immunological privilege” of the cheek pouch.

Previous experiments have indicated that the “immunological privilege” of the Syrian hamster cheek pouch (as demonstrated by Billingham et al. [10–12] with grafts of homologous skin) is probably not universal (4). For example, implants of a mouse leukemia, AK-4, which characteristically fail to grow in the pouch—unlike certain other murine leukemias (20, 21)—apparently evoke an immune response. The heightened immunity occasioned by regression of such cheek pouch implants is demonstrable by the subsequent failure of quantitated intravenous inocula to implant and grow following total-body x-radiation at doses as high as 1500 r (4), whereas earlier work (5) had shown that first-set grafts of AK-4 would grow in unsensitized hamsters under those conditions of x-ray dosage and route of inoculation.

Thus, despite its “immunological privilege” with respect to heterotransplants of certain murine leukemias as well as homotransplants of skin fragments, the pouch does not unqualifiedly support the growth of all transplanted tissues. The results with x-radiated hamsters suggest that those tissues which fail to grow in the pouch succumb to an immune response.

Essential to such a conclusion, however, and lacking in the above-cited demonstration that the pouch is not a “barrier” (12) to AK-4 antigens, is some indication that the immunity incited by regression of first-set cheek pouch transplants can operate against challenging inocula in the pouch.
itself. The present experiments are intended, in part, to correct that deficiency. Further, since cortisone is widely employed in promoting heterotransplantation in the cheek pouch, its effect on the host's acquired immunity has also been examined. The purpose of this study, therefore, is to investigate the rejection time and vascularity of first-set and second-set grafts of AK-4 in the cheek pouches of normal and cortisone-conditioned hamsters.

MATERIALS AND METHODS

Three hundred and seventeen hamsters were given inoculations of a first-set graft of 1.0×10^7 AK-4 cells in the right cheek pouch. Of these, 207 were given subcutaneously, in addition to the cells, twice-weekly injections of 2.5 mg. cortisone. Cortisone therapy was initiated at the time of inoculation with cells and was maintained through the period of rechallenge with a second-set graft of the cells to the conclusion of the experiment. An additional 76 “cortisone controls” received cortisone alone, prior to their first-set grafts.

At intervals of either 2, 3, 4, 5, or 6 weeks following pretreatment, hamsters of all three groups were challenged once with 1.0×10^7 AK-4 cells. Part of each group was challenged in the right cheek pouch (the pouch used for first-set transplantation), and the rest of the animals were challenged in the left (contralateral) cheek pouch. “Cortisone controls” not previously exposed to cells were challenged only in the right cheek pouch.

Young adult Syrian hamsters (8–12 weeks of age) were obtained for these experiments from a closely bred colony in which homografts of full-thickness skin enjoy long-term persistence, evoking only a low-grade, chronic, homograft reaction (1–8, 8).

AK-4 cells for inoculation as first-set or second-set grafts were obtained from the spleens and lymph nodes of carrier lines of AKR/Jax mice, as in experiments reported previously (4) on the transplantability of this neoplasm in x-radiated recipients. The tissues were forced through a stainless steel mesh (1/32-inch opening) into physiologic saline. Cell concentrations were then determined by standard hemocytometric methods, and suspensions were adjusted to a final concentration of 1.0×10^8 cells/ml. Inocula of 0.1 ml., containing 1.0×10^7 nucleated cells, were injected into cheek pouches with 1.0-ml. tuberculin syringes, equipped with 24-gauge needles. Inoculation of the cheek pouch with a cell suspension is accomplished under light Nembutal anesthesia, according to methods previously described (17). Trypan blue staining of several random samples of the adjusted suspensions revealed about 10–12 per cent stained cells.

Vascularization of first-set and second-set grafts was observed directly at 2- to 3-day intervals, with the host under light Nembutal anesthesia. Vascular tumors are cherry-red in color, nonvascular implants are pale. Individual growths were measured in three dimensions to the nearest millimeter, and averages of the product of these dimensions were plotted against time for each experimental group. At death, representative animals were autopsied, and the tissues were fixed in 10 per cent formalin and stained with hematoxylin and eosin for microscopic evaluation. Occasional biopsies were made prior to death for similar purposes and to test the viability of the pouch contents by retransplantation into mice.

RESULTS

First-set grafts.—The transient growth of first-set grafts of 1.0×10^7 AK-4 cells in the cheek pouches of untreated or cortisone-conditioned hamsters is illustrated in the left-hand group of curves of Chart 1. This transient growth is indicative of the hamster's normal nonsusceptibility to transplants of this neoplasm. Cheek pouch inocula formed a bleb, which disappeared at 24–48 hours. In normal, as well as cortisone-conditioned hamsters, vascular implants appeared at 3–5 days, following which the grafts grew to a maximum volume at 5–7 days. Thereafter the grafts de-
creased in size, lost their cherry-red color, and completely disappeared in 12–14 days. Although tumors varied greatly in size at the peak of growth, growths in the pouches of cortisone-conditioned hamsters were, in general, smaller than those in the pouches of normal hamsters. Cortisone-conditioning initiated at the time of inoculation with cells generally did not prolong survival of first-set tumor implants.

Extensive pretreatment of hamsters with cortisone alone similarly did not significantly alter the "normal" pattern of transient growth followed by regression at 12–14 days (Table 1, Chart 1).

TABLE 1

<table>
<thead>
<tr>
<th>TIME OF CHALLENGE (WEEKS)</th>
<th>SECOND-SET GRAFTS</th>
<th>FIRST-SET GRAFTS IN CORTISONE-CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cortisone RCP LCP</td>
<td>No cortisone RCP LCP</td>
</tr>
<tr>
<td>2</td>
<td>0/24 0/24</td>
<td>0/18 0/18</td>
</tr>
<tr>
<td>3</td>
<td>1/15 1/15</td>
<td>0/4 0/4</td>
</tr>
<tr>
<td>4</td>
<td>4/17 9/20</td>
<td>0/16 0/10</td>
</tr>
<tr>
<td>5</td>
<td>14/24 18/28</td>
<td>0/20 0/16</td>
</tr>
<tr>
<td>6</td>
<td>16/27 18/28</td>
<td>0/11 0/4</td>
</tr>
<tr>
<td>Total:</td>
<td>35/107 36/100</td>
<td>0/68 0/47</td>
</tr>
</tbody>
</table>

* All grafts as cheek pouch inocula of 1.0 × 10^6 AK-4 cells in 0.1 ml suspension.
† After transplantation of first-set graft, or the initiation of cortisone pretreatment in cortisone controls.
‡ Results are expressed as the number of growing tumors over the number of animals challenged. RCP = right cheek pouch; LCP = left cheek pouch.
§ Following pretreatment with cortisone alone for the indicated number of weeks. Normal pattern of transient growth followed by regression. All other negatives exhibited accelerated rejection. See text.

The dosage of cortisone used in these experiments is known to be adequate for the heterotransplantation of certain mouse leukemias (20, 21) or cell cultures of normal and neoplastic origin (17). Nevertheless, cortisone-conditioning does not completely suppress the immune response and, as the present experiments with AK-4 illustrate, will not permit the hamster to accept all tissue grafts. Although critical dose-response studies with cortisone have not been conducted, it is the general experience of this laboratory that higher doses of cortisone do not materially affect the nontransplantability of AK-4. Similarly, lower doses have been without effect.

Second-set grafts in normal hamsters.—Hamsters which had previously rejected first-set cheek pouch grafts vigorously rejected second-set cheek pouch grafts. The challenging inocula either showed no evidence whatsoever of implantation or formed small, barely measurable, pale implants which did not vascularize and which were completely resorbed by 7–10 days. This pattern of accelerated rejection was observed in either the pouch used for first-set transplantation or the contralateral pouch, from 2 weeks through 6 weeks following primary exposure. No vascular, measurable growth was found in 63 right cheek pouches, or in 47 (contralateral) left cheek pouches, or a total of 110 cheek pouches so studied.

Second-set grafts in cortisone-treated hamsters.—Previous rejection of first-set grafts by hamsters concomitantly treated with cortisone resulted in heightened immunity in some, and heightened susceptibility in others, to second-set grafts in the same or contralateral pouch (Table 1). Challenge at 2 weeks resulted in accelerated rejection of all second-set grafts. Challenge at 4, 5, or 6 weeks, however, resulted in progressive growth of cheek pouch tumors in about 50 per cent of the animals. During the tumor-susceptible period, non-susceptible animals manifested the same kind of accelerated rejection observed at 2 weeks, or in rechallenged normal animals at all times.

In the 50 per cent of animals which exhibited tumor growth, progressively growing tumors, free of inflammation, grew beyond the 5- to 7-day peak period observed in first-set grafts and underwent necrosis and ulceration at 10–15 days. Ultimately the tumors adhered, and the pouches could not be everted for observation. Animals dying at 4–6 weeks had large necrotic cheek pouch tumors with viable cortices and with some indication of leukemic infiltration of adjacent tissues. In no instance was disseminated leukemia observed. Biopsy of earlier tumors revealed infiltration of the loose and dense connective tissue layers and striated muscle of the pouch and, in some instances, of the pouch epithelium (Fig. 1). The tumors appeared to be free of polymorphonuclear infiltration and, similarly, necrosis was often observed to be acellular. Animals died with hyperplastic bone marrow, marked depletion of the lymphoid tissues, and renal tubules packed with degenerating cells of uncertain origin (Fig. 2). In some instances degenerating cells and nuclei were found in the liver as well. Examination of the peripheral blood in a few randomly chosen subjects revealed no leukemic cells, elevated total white counts characterized by absolute lymphopenia, and marked neutrophilia. In some instances there were large numbers of atypical histiocytes and monocytes: bi- and trilobation, folding and overlapping of the nucleus...
such immune response. Further, heterotopic homo-
that cheek pouch transplants of homologous skin are "privileged" in that they do not provoke any
grafts of the pouch itself are similarly "privileged."

the immunity is largely evidenced by heightened
refractoriness of the host to subsequent challenge
with the tumor. Cheek pouch challenge of a refrac-
tory hamster has the advantage of permitting a
careful examination and accurate appraisal of the
accelerated rejection and associated failure of vas-
cularization (9) characteristic of the second-set
rejection of AK-4 grafts. This heightened immu-

This "privilege" may in both instances be inter-
dicted by exposure of the host to the tissue iso-

cell cultures of malignant origin as well (17), may
not be explainable solely in terms of the pouch’s
acting as a barrier to immunologic sensitization of
the host. Although it has been speculated (10, 16,
18) that the same mechanisms underlying homo-
transplantation of skin in the cheek pouch may
explain the heterotransplantation of malignant
cells or tissue as well, the present studies tend to
indicate that such a view may not be entirely
correct.

Concerning the specificity of this immune reac-
tion other studies (4–6) indicate that the hamster’s
immune response to mouse leukemic grafts prob-
ably is species-specific rather than individual-spe-
cific. The absence of individual specificity in the
heterograft reaction is generally accepted (cf.
Brent [15], however, for a discussion of exceptions).
This is perhaps to be expected from the greater
taxonomic diversity that exists between species
than that which exists between members of the
same species.

Thus, the present studies confirm the findings of
earlier work (4)—that AK-4 heterografts in the
cheek pouch can incite immunity toward second-
set grafts. These studies further indicate that the
immune reaction can be observed in the pouch
itself.

Billingham et al. (10–12), however, have shown
that cheek pouch transplants of homologous skin
are "privileged" in that they do not provoke any
such immune response. Further, heterotopic homo-
grafts of the pouch itself are similarly "privileged."

DISCUSSION

Unconditioned hamsters.—The results with nor-
mal, unconditioned hamsters are similar to those
obtained by Mitchison with mice (27), in that
transplantation immunity is demonstrated in a
host normally insusceptible to the tumor by the
accelerated regression of a second-set graft. Thus,
the immunity is apparently systemic in nature, since
regression of first-set grafts in right cheek pouches
had invariably rapid and fatal consequences for
second-set grafts in left cheek pouches. The re-
results are thus somewhat reminiscent of similar ob-
servations by Greene (19) with neoplastic hetero-
grafts in another "privileged" site, the anterior
chamber.

Concerning the specificity of this immune reac-
tion other studies (4–6) indicate that the hamster’s
immune response to mouse leukemic grafts prob-
ably is species-specific rather than individual-spe-
cific. The absence of individual specificity in the
heterograft reaction is generally accepted (cf.
Brent [15], however, for a discussion of exceptions).
This is perhaps to be expected from the greater
taxonomic diversity that exists between species
than that which exists between members of the
same species.

Thus, the present studies confirm the findings of
earlier work (4)—that AK-4 heterografts in the
cheek pouch can incite immunity toward second-
set grafts. These studies further indicate that the
immune reaction can be observed in the pouch
itself.

Billingham et al. (10–12), however, have shown
that cheek pouch transplants of homologous skin
are "privileged" in that they do not provoke any
such immune response. Further, heterotopic homo-
grafts of the pouch itself are similarly "privileged."

This "privilege" may in both instances be inter-
dicted by exposure of the host to the tissue iso-

cell cultures of malignant origin as well (17), may
not be explainable solely in terms of the pouch’s
acting as a barrier to immunologic sensitization of
the host. Although it has been speculated (10, 16,
18) that the same mechanisms underlying homo-
transplantation of skin in the cheek pouch may
explain the heterotransplantation of malignant
cells or tissue as well, the present studies tend to
indicate that such a view may not be entirely
correct.

Cortisone-conditioned hamsters.—Although the
results of second-set grafting in cortisone-condi-
tioned hamsters seem to indicate that cortisone
has reversed the immune response to AK-4, per-
haps this is not wholly true. Cortisone treatment,
concomitant with first-set grafting of AK-4, did
not appear to influence the neoplasm’s ultimate
regression, nor did extensive pretreatment with
cortisone alone alter the immune response to first-
set grafts (Table 1). Other experiments (in pro-
gress) also indicate that, if immunity is stimulated
in unconditioned hamsters by first-set grafting of
the cells, the second-set immune response is not
altered by cortisone administered along with the
second-set graft. Such results are in accord with
certain evidence in mice that, although cortisone,
like x-ray (vide supra), may sometimes suppress
the acquisition of immunity, it will not abrogate
a transplantation immunity that has already been established.

The heightened susceptibility toward second-set grafts observed in these experiments should, therefore, be considered to be related to prior exposure of the hamster to graft antigen together with cortisone. This view is sustained by the observations that pretreatment with cortisone alone was without effect on the normal acquisition of immunity and that pretreatment with cells alone stimulated heightened immunity. The design of these experiments permits no conclusion, however, whether the observed alteration in immune status was permanent or cortisone-dependent, since experiments in which cortisone is withheld following regression of the first-set grafts have not yet been done. Nevertheless, the data suggest that (a) concomitant exposure to antigen may augment the action of cortisone in depressing the immune response or (b) cortisone may quantitatively or qualitatively alter the immune reaction in such manner that the end-result is similar to enhancement.

The results with cortisone-conditioned hamsters may bear some relation to recent reports in which partial or complete abrogation of the homograft reaction is potentiated by pretreatment of the host with antigen in combination with a chemotherapeutic agent. Rubin (32) reported reversal of the immune response or (6) cortisone may quantitatively or qualitatively alter the immune reaction in such manner that the end-result is similar to enhancement.

The heightened susceptibility toward second-set grafts observed in these experiments should, therefore, be considered to be related to prior exposure of the hamster to graft antigen together with cortisone. This view is sustained by the observations that pretreatment with cortisone alone was without effect on the normal acquisition of immunity and that pretreatment with cells alone stimulated heightened immunity. The design of these experiments permits no conclusion, however, whether the observed alteration in immune status was permanent or cortisone-dependent, since experiments in which cortisone is withheld following regression of the first-set grafts have not yet been done. Nevertheless, the data suggest that (a) concomitant exposure to antigen may augment the action of cortisone in depressing the immune response or (b) cortisone may quantitatively or qualitatively alter the immune reaction in such manner that the end-result is similar to enhancement.

The results with cortisone-conditioned hamsters may bear some relation to recent reports in which partial or complete abrogation of the homograft reaction is potentiated by pretreatment of the host with antigen in combination with a chemotherapeutic agent. Rubin (32) reported reversal of the immune response or (6) cortisone may quantitatively or qualitatively alter the immune reaction in such manner that the end-result is similar to enhancement.

The results with cortisone-conditioned hamsters may bear some relation to recent reports in which partial or complete abrogation of the homograft reaction is potentiated by pretreatment of the host with antigen in combination with a chemotherapeutic agent. Rubin (32) reported reversal of the immune response or (6) cortisone may quantitatively or qualitatively alter the immune reaction in such manner that the end-result is similar to enhancement.

The need for more information on mechanisms...
whereby a host will support an antigenically variant tumor, of which enhancement may be considered one example, is made more pressing by recent experiments of Prehn (30) and Sjögren et al. (38). These experiments demonstrate the antigenicity of chemically and virally induced tumors in mice and pose the problem of how such tumors survive in the autochthonous host without evoking an auto-immune “homograft” response. A theoretical solution to the problem may be available in the concept of self-enhancement, which, at least, must be ruled out in any explanation of the seemingly paradoxical phenomenon. Further elucidation of the mechanisms underlying heterotransplantation in the hamster pouch, and heightened susceptibility, may contribute useful information.

ACKNOWLEDGMENTS

The author wishes to acknowledge the technical assistance of Mr. David Hallett and the assistance of Dr. G. Cardinali, The Children’s Cancer Research Foundation, Boston, in the interpretation of blood films. We are indebted to Mr. John Carabitses for preparation of photographs.

REFERENCES

Fig. 1.—Growing second-set graft of AK-4 cells in cortisone-treated hamster. Biopsy of 12-day cheek pouch tumor. Infiltration of connective tissue and epithelium of the pouch. Hematoxylin and eosin, X375.

Fig. 2.—Kidney of cortisone-treated hamster bearing a second-set AK-4 cheek pouch tumor; 20 days. Note tubules containing degenerating cells and nuclei. Hematoxylin and eosin, X115.

Figs. 3-5.—Inflammatory cells in the peripheral blood of cortisone-treated hamsters bearing second-set AK-4 tumors in cheek pouch. Wright’s stain and Giemsa, X1010.
Heightened Immunity and Susceptibility toward Cheek Pouch Heterografts of a Mouse Leukemia in Syrian Hamsters

Richard A. Adams

Cancer Res 1963;23:1834-1840.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/23/11/1834

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/23/11/1834.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.