Inhibition of Urethan Lung Tumor Induction in Mice by Total-Body X-Radiation*

WILLIAM A. FOLEY AND LEONARD J. COLE

(Biological and Medical Sciences Division, U.S. Naval Radiological Defense Laboratory, San Francisco, California)

SUMMARY

Groups of young, adult (C57L × A)F1 mice received a single intraperitoneal injection of urethan prior to or after a single whole-body lethal dose of x-rays (880 rad) followed by transfusion of normal syngeneic bone marrow to protect against radiation death. This dose of urethan produced multiple tumors in 100 per cent of nonirradiated animals at 24 weeks postinjection. In the irradiated animals there was marked suppression of lung tumor formation, both in number of animals with tumors and in numbers of tumors per tumor-bearing animal. This suppression was present whether urethan treatment preceded or followed radiation. The results imply that urethan lung carcinogenesis may be interfered with by a direct inhibitory effect of the radiation on cells already altered by urethan, or through latent radiation inhibition of pulmonary alveolar proliferative capacity.

The compound urethan (ethyl carbamate) is a potent carcinogen capable of producing pulmonary tumors in 100 per cent of susceptible animals after a single injection (14, 19). Interest in urethan in our laboratory followed reports of its effects on bone marrow (18), and experimental evidence of its capacity to provide increased radioresistance in mice to x-radiation has been published (8). In the course of these and other experiments the question of radiation sensitivity of urethan tumor induction arose. Observations from several different experiments and certain theoretical considerations led us to suspect that x-radiation might inhibit urethan pulmonary tumor induction. The experiments reported here show a marked suppression of pulmonary tumor formation when total-body x-radiation (880 rad) was carried out either before or after a single intraperitoneal injection of urethan, which by itself evoked multiple tumors in 100 per cent of nonirradiated control animals.

MATERIALS AND METHODS

Ninety-five LAJ1 male mice, age 9–10 weeks (weight 18–21 gm.) at the time of urethan injection were employed in these experiments. They were housed seven to ten per cage in galvanized metal cages with free access to tap water and Purina Laboratory Chow.

The animals were randomly divided into the following experimental groups: (a) untreated controls, (b) radiation only controls, (c) urethan only controls, (d) urethan followed 1 week later by radiation, (e) urethan followed 24 hours later by radiation, (f) urethan followed 3 hours later by radiation, (g) radiation followed 3 hours later by urethan.

X-radiation was carried out in a single whole-body exposure of mice in individual, perforated lusteroid tubes on a circular wooden turntable rotating at 3.5 r.p.m. The dose was 880 rad. The radiation factors were 250 kvP, 15 ma.; filter, 0.5 mm. Cu plus 1.0 mm. Al; HVL, 1.28 mm. Cu; 100 cm. target to skin distance; dose rate, 30 rad/min. Twenty-four hours after this exposure, the irradiated mice received by intravenous injection approximately 6×10^6 marrow cells from syngeneic (i.e., LAJ1) donors, age 6–8 weeks, in order to protect against acute radiation death (5).

All animals were observed until the time of sacrifice, 24 weeks following urethan treatment; and to the same age for the nonurethan controls. They were sacrificed by cervical dislocation, and an immediate gross autopsy was done. The exsorpired lungs and trachea were fixed intact in
Telyesniczky acetic alcohol formalin (11) for 24 hours. At that time, careful counts of gross pulmonary tumors on the surfaces of the lungs were made, and the tissues were prepared for microscopic examination.

RESULTS

Pulmonary tumors.—The findings on per cent of mice with tumors and number of tumors per mouse are presented in Table 1. None of the untreated controls, and only one of the ten x-ray-treated control mice had a pulmonary tumor at the time of sacrifice. Treatment with urethan alone produced multiple tumors (mean of 5.6 per mouse) in 100 per cent of the animals. By contrast, exposure of the urethan-treated mice to 880 rad of x-rays sharply reduced the number of mice with pulmonary tumors, when the radiation was administered either 24 hours after, 3 hours after, or 3 hours before the single injection of urethan—i.e., as few as two mice with tumors out of fifteen, versus sixteen mice with tumors out of sixteen. Furthermore, the total number of pulmonary tumors observed was markedly decreased from 89 in the urethan-only group to two in the groups of mice which received urethan plus radiation 3 hours later or 24 hours later. When the radiation treatment followed urethan by 1 week, the number of tumor-bearing animals was about half that of the control, urethan-only group, and the average number of tumors per tumor-bearing mouse was also reduced (1.5 versus 5.6 tumors per mouse). It is of interest that a definite and marked reduction in urethan pulmonary tumor incidence was also observed when the x-radiation was given 3 hours prior to urethan.

Histopathology.—All pulmonary tumors were confirmed by microscopic examination (Fig. 1). They were similar in description to that given by others for spontaneous and urethan-induced neoplasms in the mouse lung (4, 20). Both compact and adenoid patterns were observed, sometimes in the same gross lesion, and no difference in histology of the pulmonary tumors could be detected between the irradiated and nonirradiated tumor-bearing animals. Although no evidence of metastasis was found in these experiments, we have seen extension of such tumors to regional lymph nodes in other experiments in which urethan-treated mice were allowed to live for periods of 1 year or more after treatment. In addition, seven animals from the present series showed focal areas of “adenomatous” change (Figs. 2, 3) which was morphologically distinct from the tumors, in that they were flush or retracted from the lung surface (in contrast to the bulging of tumors), and on microscopic examination showed areas of alveolar cell proliferation, inflammatory cellular infiltrate, fibrous thickening of alveolar walls, and cellular debris in the alveolar lumina. Two of these mice were in the urethan-only group, two in the group given radiation 3 hours after urethan, and one each in the irradiated controls, untreated controls, and in the mice irradiated 24 hours after urethan.

No significant degree of glomerulosclerosis was observed in any of the animals. No cases of leukemia were seen in any of the groups, although microscopic examination of marrow and lymphoid organs was made in all cases. The liver showed no pathological changes on microscopic examination.

Body weights.—Data on body weights of the animals at the time of sacrifice are given in Table

TABLE 1

<table>
<thead>
<tr>
<th>Treatment†</th>
<th>No. mice</th>
<th>No. tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In group</td>
<td>With tumors</td>
</tr>
<tr>
<td>None</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>X-ray only</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Urethan only</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Urethan, x-ray 1 week later</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Urethan, x-ray 24 hr. later</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Urethan, x-ray 3 hr. later</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>X-ray, urethan 3 hr. later</td>
<td>15</td>
<td>3</td>
</tr>
</tbody>
</table>

* Male IAFs, treated at 9-10 weeks of age, sacrificed 24 weeks later.
† X-ray: 880 rad whole-body x-radiation followed 24 hr. later by 6×10⁶ syngeneic marrow cells intravenously.
‡ In tumor-bearing mice.
Urethan: ethyl carbamate (U.S.P.) 1 mg/gm body weight.

Downloaded from cancerres.aacrjournals.org on July 20, 2017. © 1963 American Association for Cancer Research.
2. Significant differences (P < 0.05 by Student "t" test) in average body weight at time of sacrifice were observed between each group treated with the combination of urethan and radiation versus each of the control groups (untreated, urethan only, radiation only), except that the group irradiated before urethan treatment did not differ significantly from the radiation control group—i.e., mean of 28.1 vs. 29.8. The radiation control group also differed significantly from the untreated and from the urethan-only groups.

DISCUSSION

A decreased incidence of pulmonary tumors in mice following large, single doses of fast neutrons or x-rays has previously been reported from this laboratory (15) and by others (23) following gamma or neutron radiation. A similar reduction in nitrogen mustard-induced pulmonary tumors after x-radiation has been reported by Heston et al. (8). The present data support the above findings of a radiation inhibition of alveolar cell proliferation, in this case induced by urethan. They also provide evidence for a latent radiation effect to the alveolar cells, in that mice treated with urethan 3 hours after x-radiation showed decrease in tumor incidence similar to that seen in those treated with urethan before x-radiation. This latent radiation inhibition is probably analogous to that previously reported from this laboratory with respect to proliferative capacity of kidney (7), another tissue whose normal cell turnover rate, like lung, is relatively low. Furthermore, we have not found any histologic evidence of either urethan or x-ray effects on mouse lung in routine preparations studied over an acute (2-week) period following treatment. This observation confirms previous reports on radiation (16) and urethan (13) experiments and emphasizes the subcellular site of action of these agents. Urethan is presumed to exert its biological effect through interference with DNA synthesis, possibly at the level of the pyrimidine nucleotides (17). It is also known to be rapidly excreted from the animal body (2, 3).

It is probable, on the basis of the above considerations, that this inhibitory effect of x-radiation on urethan-induced lung tumorigenesis is critically dependent on the high radiation dose used. Therefore, at some lower dose level, or with fractionated x-radiation (18) the lung carcinogenic effect of radiation may turn out to be additive with that of urethan. Experiments designed to resolve this point are in progress.

The "adenomatous" change seen in a few mice in several of the treatment and control groups is similar to that described by Horn et al. (9).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean ± S.E.</th>
<th>Range</th>
<th>Per cent mice with tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>33.0 ± 0.6</td>
<td>30.3–37.5</td>
<td>0</td>
</tr>
<tr>
<td>X-ray only</td>
<td>29.8 ± 0.8</td>
<td>26.0–34.9</td>
<td>10</td>
</tr>
<tr>
<td>Urethan only</td>
<td>34.0 ± 0.9</td>
<td>31.4–42.5</td>
<td>100</td>
</tr>
<tr>
<td>Urethan, x-ray 1 week later</td>
<td>27.9 ± 0.5</td>
<td>24.8–31.0</td>
<td>53</td>
</tr>
<tr>
<td>Urethan, x-ray 1 day later</td>
<td>27.5 ± 0.4</td>
<td>23.1–30.1</td>
<td>13</td>
</tr>
<tr>
<td>Urethan, x-ray 3 hr. later</td>
<td>27.2 ± 0.4</td>
<td>24.9–30.8</td>
<td>13</td>
</tr>
<tr>
<td>X-ray, urethan 3 hr. later</td>
<td>28.1 ± 0.5</td>
<td>24.1–31.2</td>
<td>40</td>
</tr>
</tbody>
</table>

* All mice weighed between 18 and 21 gm. at time of random selection into groups for treatment. No significant differences in body weight were found between tumor-bearing and tumor-free mice in the individual groups.

This lesion bears a microscopical resemblance to the contagious alveolar proliferation (jaagsiekte) in sheep. Similar lesions have been described in man (1). A recent report (22) on such lesions in DBA mice following urethan treatment interpreted them as a neoplastic response. The specific etiology of this lesion is not known, and the multiplicity of names that have been applied to it bears witness to the lack of agreement which surrounds it. The occurrence in this study was too infrequent and sporadic to allow any definite conclusions, but we feel with Horn et al. (9) that this "adenomatous" change is an inflammatory response and not a true neoplasm.

The mechanism by which a single, high dose of whole-body x-radiation antagonizes the lung-carcinogenic effect or urethan is not known. At first sight this effect seems perhaps paradoxical, since urethan is itself radiomimetic. We have considered two possible hypotheses: (a) that the radiation
produces intracellular damage such that the capacity for proliferation on the part of the alveolar cells is inhibited (at least for a time) and, therefore, that the population of cells able to emerge as tumors due to the carcinogenic or cocarcinogenic effect of urethan is greatly reduced; (b) that the interaction of urethan with a biochemical "target" (possibly DNA) involved in the carcinogenic change is somehow interfered with under conditions in which X-radiation is applied shortly before (3 hours) or shortly after (3 or 24 hours) urethan. Perhaps there is competition between X-radiation and urethan for the same "target" site. It is noteworthy to point out, in support of this concept, that the suppressive effective of X-radiation on urethan-induced lung tumorigenesis was appreciably lessened when the radiation was given 1 week after urethan, as compared with 1 day or 3 hours after urethan (Table 1). Apparently, some urethan-induced changes, related to eventual carcinogenesis, already had occurred in the lung cells within 1 week after injection of urethan.

There remains the possibility that the time of sacrifice in these experiments (24 weeks post-treatment) does not measure the true carcinogenicity of urethan plus radiation; if these animals were allowed to live for a larger fraction of their life span, more tumors might arise in the irradiated animals. However, it is probable that more tumors per animal also would be found in the animals treated with urethan only (19).

The question of body weight reduction, reflecting reduced caloric intake or urethan toxicity, as a possible factor in suppression of tumor formation must be considered in light of the body weight data (cf. 21). The fact that a similar weight reduction failed to give similar tumor inhibition (i.e., in the group irradiated 1 week after urethan versus the other group) would seem to indicate that failure to gain weight was a concomitant and not a causal factor in pulmonary tumor inhibition. Furthermore, in the experiments of Larsen and Heston (10), decrements in body weight, similar to those observed here, were produced by caloric restriction but did not elicit significant changes in spontaneous tumor incidence in male strain A mice; still more profound reduction in body weight (by caloric restriction) yielded a smaller reduction in spontaneous pulmonary tumor incidence than was seen in the present experiments.

Experiments are now in progress in the attempt to resolve some of the questions raised by the present findings—i.e., to determine the effect of fractionated X-radiation on urethan-induced lung tumorigenesis; to ascertain whether the radiation effect is direct or indirect through partial shielding; and to evaluate the role of proliferative capacity of alveolar cells, by means of autoradiography.

REFERENCES

FIG. 1.—Pulmonary alveolar tumors in urethan-treated mouse. Adenoid pattern in tumor on right and compact pattern in tumor on left. Note bulging of pleural surface in latter. H. & E., ×80.

FIG. 2.—An "adenomatous" lesion from a mouse irradiated 1 week after urethan treatment. H. & E., ×125.

FIG. 3.—Higher magnification of Figure 2. Note proliferation of alveolar cells and inflammatory reaction. H. & E., ×250.
Inhibition of Urethan Lung Tumor Induction in Mice by Total-Body X-Radiation

William A. Foley and Leonard J. Cole

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/23/8_Part_1/1176

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.