Serum Properdin in Tumor-bearing Mice. I. Comparison with Natural and Immune Antibodies*

EMANUEL E. SCHWARTZ AND SEYMOUR WINSTEN
(Research Laboratories, Departments of Radiology and Laboratories, Albert Einstein Medical Center, Philadelphia 47, Pennsylvania)

SUMMARY
Growth of a transplanted, isologous mammary carcinoma resulted in depressed titers of serum properdin and Shigella parodyenteriae antibody in mice. This tumor had no apparent deleterious influence on natural anti-sheep hemagglutinins. Tumor antigen preparations did not produce these effects. The likelihood that these alterations in immune response are secondary rather than direct effects is suggested by their constant association in time with the preterminal state and by the observation that properdin levels could be preserved by zymosan injections without influencing tumor growth.

In the decade since the existence of a naturally occurring, circulating euglobulin termed “properdin” was first announced (11) many questions have arisen concerning the true nature of this substance. Properdin was originally said to be multipotential, being bactericidal, hemolytic, and virus-neutralizing in the presence of complement and the cation magnesium. Pillemer believed that properdin differed from antibody but stated that properdin might be a primordial type of antibody. Other investigators (9, 10) have subsequently challenged this interpretation.

Nelson (9), for one, has collected evidence suggesting that the phenomena ascribed to the properdin system can be explained in terms of classical antibody in combination with complement. Lepow (8) has ventured the opinion that the properdin system may be a group of nonspecific factors which are conceptually analogous to complement and which participate in certain kinds of antigen-antibody reactions to produce inactivation of C’3 or cellular damage.

An interesting characteristic of properdin has been described in its relationship to the growth of transplantable tumors. A depression in serum levels of properdin has been observed in hosts of different tumors (2, 4–6); however, the results reported have varied.

An effort has been made in the present study to eliminate some variables by sequentially sampling the same mice. In consideration of the possible relationship between properdin and classical antibody, determinations of natural anti-sheep hemagglutinins and immune antibodies to Shigella organisms have also been performed. To further evaluate the interdependence of properdin and tumor growth, attempts have been made to influence one or the other by local x-radiation or zymosan administration.

* This work was supported by Grant CA 04653-03 AI from the National Institutes of Health, U. S. Public Health Service.

Received for publication December 6, 1963.

MATERIALS AND METHODS
C57BL/6J mice of both sexes, closely inbred in the authors’ laboratory, weighing 18–25 gm. and 9–11 weeks of age, were used in these studies. They were allowed Purina Laboratory Chow and water ad libitum and were caged in groups of four to six.

The isologous mammary adenocarcinoma BW10232 was transplanted subcutaneously to the right thigh of these mice. These tumors were minced immediately following excision, and fragments 2 mm. in diameter weighing approximately 20 mg. (wet weight) were introduced by means of a 15-gauge trocar. Controls were given inoculations subcutaneously, at the same time, of fragments of kidney from normal donors of the same subline and sex. Aseptic precautions were observed throughout. Sites of inoculation were measured with calipers to determine tumor growth, and recipients were weighed 3 times weekly. All mice were autopsied on death, and tissue sections were examined microscopically when deemed necessary.

This mammary tumor (MT) arose spontaneously in a C57BL/6J female. Since being obtained from the Jackson Memorial Laboratory, it has been carried in C57BL males of the authors’ subline through more than 50 transplant generations in over 1500 recipients without appreciable alteration in growth pattern or a single instance of spontaneous regression. The tumor characteristically remains confined to the subcutaneous tissues of the thigh without infiltrating muscle or skin. Grossly, it is white, soft in consistency, and moderately vascular. Pleural effusions and, occasionally, ascites may be present, but no enlarged lymph nodes or other metastases have been seen in the untreated animal. Microscopically, it consists of small cells in a mixed, undifferentiated, and glandular pattern with interspersed foci of ischemic necrosis. Numerous blood-filled sinusoids or thin-walled vessels are present, but little...
levels of 15 or above.

Serological procedures.—All mice were serially bled from the ophthalmic venous plexus with sterile pipettes. Approximately 0.4-cc. samples were aspirated for the properdin and the Shigella assays from the same mice at weekly intervals, before and after tumor transplantation; 0.15 cc. of blood was aspirated twice weekly for the hemagglutinin assay. Sera obtained on centrifugation after clotting were immediately frozen and stored at —12° to —20° C. until assayed.

Properdin assays were performed by a modification of Pillemer’s procedure (12). Each batch of RP and R3 was prepared from pooled normal sera obtained from at least ten human donors. These reagents were kept at —12° C. and used within 2 weeks of preparation. Anti-sheep hemolysin was obtained from Cappel Laboratories and from the Baltimore Biological Laboratory. Freshly prepared batches of sheep red cells in Alsever’s solution received weekly were used. Zymosan, Fleischmann Standard Brands lot #98-551, Type A, was ground with a glass homogenizer and suspended in isotonic saline immediately before use in the assay. (When injected into experimental mice the zymosan suspensions, 1 mg/cc., were, in addition, placed in a boiling water bath for 30 minutes and used within 24 hours.)

One unit of properdin in human serum has been defined as the quantity which, in the presence of an optimal amount of zymosan, completely inhibits 120 units of C’3 in 1 ml. of RP during 1 hour’s incubation at 37° C, thereby preventing hemolysis of sensitized sheep red cells (11). In most runs 10–20 per cent hemolysis could be used as the end-point, as has been suggested by Pillemer’s group. Occasionally, the poor hemolysis obtained with normal mouse sera indicated a deficiency of C’3 activity in the RP and necessitated using the first trace of hemolysis (5–10 per cent) as the end-point instead. To circumvent problems encountered in preparing standardized reagents, pooled normal mouse serum was always run simultaneously with the experimental samples as an additional control. Since, in the first step of the assay, the reaction of zymosan with mouse properdin may be inhibited by the presence of properdin-free mouse complement, the euglobulins in all samples were first precipitated and then reconstituted by properdin-free mouse complement, the euglobulins in all samples were first precipitated and then reconstituted by the method described by Kent (7).

All samples on individual animals were assayed on the same day with the same reagents. Following this procedure, serum properdin in normal mouse serum was found to range between 15 and 30 units. Levels were considered to be significantly depressed only when titers persistently remained less than one-half of that present prior to tumor transplantation.

No decline in properdin activity occurred in mouse sera stored at —15° C. as long as 5 months. A slight increase in properdin activity was observed with increased mouse age from 5 through 9 weeks, but even the youngest had levels of 15 or above.

Assay of induced and natural antibodies.—0.1-MI. suspensions of 10⁶ alcohol-killed Shigella paradysenteriae B organisms were injected intraperitoneally 8 days before tumor transplantation. Induced anti-Shigella titers were determined by a standard slide agglutinin technic. A decrease in tube dilution to less than one-half of the maximum observed in response to the antigen was considered significant.

For the hemagglutinin assay, 0.05 ml. of 1 per cent suspensions of washed sheep erythrocytes was added to serial dilutions of experimental mouse sera. Hemagglutination was observed after 2 hours’ incubation at room temperature and compared with saponin standards.

Irradiation procedure.—The mice were immobilized on a rotating platform without anesthesia. Except for the lower extremity into which the tumor had been introduced 2 weeks previously, the bodies of these mice were carefully shielded from the x-ray beam with ½ inch thickness lead. X-ray exposures were administered with a G.E. Maxitron apparatus under the following physical conditions: 250 kvP, 30 ma., 72 cm. FSD, ½ mm. Cu, 1 mm. Al added filtration, HVL = 0.95 mm. Cu. Roentgen output, including backscatter, was 77 r/min. Dose rates were monitored with a calibrated Victoreen ionization chamber before and after each exposure. The radiation exposure of the shielded parts of the experimental subjects was found to be 1–2 per cent of the dose received by the unshielded extremity.

TABLE 1

<table>
<thead>
<tr>
<th>EXPERIMENT</th>
<th>DAY RELATIVE TO TUMOR TRANSPLANTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-6</td>
</tr>
<tr>
<td>I</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td>II</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

Italicized numerals indicate significant changes.

* Hematocrits were 25% or less at times shown in Experiment I. Hematocrits were not performed in Experiment II.
RESULTS

Tumor recipients first showed a decrease in properdin toward the end of the 2d week after transplantation (Table 1). In five replicate experiments, a total of 23 out of 52, or 44.3 per cent of such mice, demonstrated this effect, whereas no decline occurred in any of the 31 controls bled concomitantly at similar intervals. As shown in two typical experiments (Table 1), changes in titer became apparent as death approached. The over-all deterioration of the host at this time was reflected by weight loss and anemia. On occasions when tumor hosts survived longer than usual, properdin levels were not influenced until later. In a limited study on C57BL/6J females, six out of seven mammary tumor recipients likewise developed low properdin titers.

| TABLE 2 |
| SHIG. PARADYSENTERIAE B ANTIBODY TITERS IN C57BL MICE |
| Values are given in serum properdin units/ml. These units are defined in “Materials and Methods” |

<table>
<thead>
<tr>
<th>GROUP</th>
<th>DAY RELATIVE TO TUMOR TRANSPLANTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-9</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>MT recipients</td>
<td>80</td>
</tr>
<tr>
<td>Controls</td>
<td>160</td>
</tr>
</tbody>
</table>

* 10⁴ alcohol-killed organisms were injected intraperitoneally into male mice 8 days before transplantation.

Titors are given as the reciprocals of the serum dilutions.

In a duplicate experiment seven of eight MT recipients and only one of eight controls demonstrated a fall in titer.

| TABLE 3 |
| NATURAL ANTI-SHEEP HEMAGGLUTININS IN MAMMARY TUMOR-BEARING C57BL MICE |

<table>
<thead>
<tr>
<th>NO. MICE ASSESSED</th>
<th>TITERS AFTER TRANSPLANTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. in-</td>
</tr>
<tr>
<td></td>
<td>creased</td>
</tr>
<tr>
<td>Measures titers present before transplantation</td>
<td>9</td>
</tr>
<tr>
<td>No titers originally present</td>
<td>10</td>
</tr>
<tr>
<td>Totals</td>
<td>19</td>
</tr>
</tbody>
</table>

Induced Shigella antibodies.—Response to the Shigella antigen was less pronounced and less sustained in tumor-bearers than in normal controls. Titors fell to less than half the maximum within 2–3 weeks after tumor transplantation in eleven of fourteen MT-recipient as compared with one of fifteen normal controls (Table 2). As in the case of serum properdin, the depression in titer once present persisted until death.

As an additional control Shigella antigen was injected into normal mice, and serum properdin levels were then determined at weekly intervals. No increase in properdin titers took place in these animals.

Hemagglutination studies.—Approximately half of the tumor-bearing mice prior to tumor inoculation had naturally occurring anti-sheep hemagglutinins. Although findings after tumor transplantation varied somewhat, certain general patterns could be discerned (Table 3). Zero baseline titers tended to remain as such. In the females there was either no significant change—i.e., less than one tube dilution difference—or a tendency to develop higher titers as the tumor grew progressively. In the males that were evaluated on this basis there was usually no change.

Exogenous influences on tumor growth and serum properdin.—

Local tumor irradiation: Mammary tumor growth was temporarily inhibited by a single exposure to 3,000 roentgens, thereby enabling tumor recipients to survive approximately (1/2–1 times) as long as usual. Serum properdin levels were depressed in nine of twelve mice so treated; this decline tended to appear later than in unirradiated animals (Chart 1). Weight loss and anemia were similarly delayed. The possibility that local irradiation or weekly bleedings over these extended periods may have contributed, to some extent, to the decline in titer was suggested by the finding that three of thirteen similarly irradiated and bled recipients of normal kidney similarly had...
assay itself.

from a different source from that used in performing the
zymosan2 injected in the latter experiments was obtained
cent. Results in female MT recipients were similar. The
thus giving a total of only four of 26 or 15.4 per cent, as
fined to only one out of ten mice, despite the absence of
cate experiment three of sixteen mice developed low titers,
served. In one such study in which properdin assays were
satisfied on days shown.

significant depressions. Five of the tumor-bearers had
multiple pulmonary metastases at death; however, the
presence of these metastases could not be correlated with
changes in serum properdin.

Zymosan administration: In several experiments in which
10-40 mg/kg of zymosan was injected intravenously or
intraperitoneally at different intervals ranging from 2 days
before to 22 days after tumor transplantation, no signifi-
cant influence on tumor growth or host survival was ob-
erved. In one such study in which properdin assays were
performed, significant depressions in their levels were con-
fined to only one out of ten mice, despite the absence of
appreciable effects on tumor growth (Chart 2). In a dupli-
cate experiment three of sixteen mice developed low titers,
thus giving a total of only four of 26 or 15.4 per cent, as
compared with the usual incidence of approximately 44 per
cent. Results in female MT recipients were similar. The
zymosan注入 injected in the latter experiments was obtained
from a different source from that used in performing the
assay itself.

DISCUSSION

These results clearly indicate that serum levels of both
properdin and Shigella antibody are adversely influenced
by the growth of a mammary adenocarcinoma in C57BL
mice.

Zymosan was administered to MT-carrying mice in an
attempt to elucidate the association between these events.
This insoluble carbohydrate complex derived from yeast
cell walls is purported to influence both tumor growth
(3, 5, 14) and serum properdin levels in rodents (13). It is
noteworthy that the transplanted tumors which are re-
ported to be affected by zymosan have not generally been
isogenic. In the present study, although properdin levels
were maintained by injections of zymosan mammary tumor
growth and host survival were uninfluenced (Chart 2). It
would appear, therefore, that properdin, per se, has no
specific or restraining influence on the mammary car-
cinoma. The timing of the observed impairment of im-
une response suggests that it is more probably a second-
ary manifestation of the poor condition of the host animal
preceding death.

Natural anti-mouse hemagglutinins have been found with
some regularity in C57BL mice, although not in other
strains (18). Different sublines of C57BL mice apparently
differ in this respect. Immune hemagglutinins are said
to be more frequently depressed during tumor growth than
are natural hemagglutinins (16, 19). A decline in anti-
mouse hemagglutinins has likewise been noted in tumor-
bearing mice (1). The possibility that serum properdin might be affected
by a tumor-specific antigen has been investigated in this
laboratory by injecting a large number of mice of the same
subline with lyophilized mammary tumor or with alter-
ately frozen and thawed tumor homogenates. Such
preparations have been reported to retain antigenicity and
to be capable of evoking a homograft response (17). No
recipient of these preparations has shown a significant
alteration in serum properdin.4

The frequency of anemia in MT-carrying mice toward
the end of their survival and the accompanying marked ex-
pansion of plasma volume is another possible explanation
for the results obtained. However, repeated bleedings and
the production of severe anemia in otherwise normal mice
have never succeeded in reproducing the effect on proper-
din in this laboratory.4

The above results are consistent with the conclusion that
the impairment of immune response as manifested by de-
pressions in serum properdin and antibody titers to
Shigella are indirectly rather than directly related to the
growth of mammmary tumor. The extent to which these
findings apply to tumors of different origin, genotype, and
histology is being investigated (15).

ACKNOWLEDGMENTS

The authors are indebted to Drs. Chester M. Southam and
Irwin H. Lepow for helpful suggestions regarding the properdin
assay. They are also grateful to Mrs. Jean Jackson, Miss Mary
Stevens, and Mrs. Annaliese Hessler for excellent technical as-

REFERENCES

1. BOGDEN, A. E., AND APTEKMAN, P. M. Disappearance of
Natural Heteroagglutinins for Human Erythrocytes from the
Sera of Rats with Progressively Growing Tumors. Cancer
2. BRADNER, W. T., AND CLARKE, D. A. Serum Properdin Levels
3. BRADNER, W. T.; CLARKE, D. A.; AND STOCK, C. C. Stimula-
tion of Host Defense against Experimental Cancer. I. Zymosan
4. HERBUT, P. A., AND KRAMER, W. H. The Effects of Guinea
Pig Serum on Lymphosarcoma 638HED in C3H mice. Blood,
5. HERBUT, P. A.; KRUM, W. H.; PILLEMER, L.; AND TODD,
E. W. Studies on the Properdin System in Rats Bearing the
Transplantable Human Carcinoma HR132. Cancer Res.,
6. KALLENBACH, H., AND THUERINGEN, G. Determination of
Properdin in the Serum of Rats with Rapidly Growing Tran-
7. KENT, J. F.; TOUBIGHT, A. J.; AND HOOK, W. A. Adaptation
8. LEPOW, I. H. The Properdin System. A Review of Current

9 E. E. Schwartz, unpublished data.

* Fleischmann Standard Brands Lot #5B-171 was kindly pro-
vided by Dr. William T. Bradner.
Serum Properdin in Tumor-bearing Mice. I. Comparison with Natural and Immune Antibodies

Emanuel E. Schwartz and Seymour Winsten

Cancer Res 1964;24:825-829.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/24/5/825

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.