Wound contamination with tumor cells at the time of operation for cancer is one of the recognized causes of local recurrence. It has been suggested that deposition in the wound, of cells circulating in the blood stream, may also explain some of the recurrences.

R. R. Smith and associates (8) demonstrated that histologic evidence of vascular invasion in the excised specimen was associated with an increased incidence of malignant cells found in wound washings. They postulated seeding of wounds from severed lymphatic and blood vessels as a cause of local recurrence. Robinson and Hoppe (7) showed that V2 carcinoma of rabbits injected into the descending aorta implanted more frequently in limbs subjected to ischemia or blunt trauma than in normal limbs.

This study evaluates the capacity of cells from several animal tumor systems to implant in surgical incisions from the circulating blood.

MATERIALS AND METHODS

1. Two longitudinal incisions (3 cm. long) and two transverse incisions (2 cm. long) were made in 130 female Sprague-Dawley rats weighing between 150 and 200 gm. The incisions were carried through skin and muscle, but no body cavities were entered.

Walker 256 cell suspensions were prepared by mincing the tumor in Hanks solution and passing it through a stainless steel cytosieve. The suspension was then diluted with sufficient Hanks solution to yield the desired number of cells in 0.5 ml. The suspensions of Guerin uterine tumor were prepared in like fashion. One gm. of tumor tissue in 10 or 20 ml. of Hanks solution was used because it is very difficult, if not impossible, to count Guerin tumor cells.

The incisions were made and closed prior to the injection of the cell suspension into a hind leg vein. This allowed a 10- to 60-minute interval between surgery and cell dissemination. The cells were injected in various doses (see Table 1).

2. Twenty Swiss mice were subjected to one dorsal and one abdominal incision. A suspension of Sarcoma 180 cells was prepared by the above method. The mice received a dose of 500,000 S-180 cells after closure of the incisions.

3. Two 8-cm. longitudinal dorsal incisions and two 4-cm. transverse ventral incisions of the skin and muscle layers were made in seven 3-kg. female rabbits. Four million V2 cells were injected intravenously into a hind leg of four female rabbits weighing 3 kg. One million V2 cells were given into the aorta of the other three animals after two incisions were made on the back and two incisions made on the abdomen.

An intra-aortic injection of one million V2 cells was made in six rabbits after making and closing two incisions on one hind leg on each of the animals. The intra-aortic injections were done via a cannula passed through the ligated left common carotid artery.

4. All animals were observed for the 4- to 6-week period necessary for them to die or become moribund from pulmonary metastases. The skin was then removed from the incised areas, and the skin and muscle were thoroughly palpated and examined for tumors. Any areas suggestive of tumor growth were submitted for histologic examination.

RESULTS

None of the rats subjected to intravenous injection of various doses of Walker 256 or Guerin cells developed metastases in any of the 520 scars (Table 1).

No tumor nodules developed in any of the 40 dorsal and
There has been ample work to show that tumor cells given by the intravenous route are capable of passing through the lungs and appearing in the peripheral blood. Jonasson (3) showed that these cells are viable. Zeidman and Buss (9) also demonstrated transpulmonary passage and viability of intravenous tumor cells. They injected V2 carcinoma and Walker 256 carcinomas into the peripheral veins of rabbits and rats and showed that blood obtained from the aorta would produce tumor growth when given intravenously to a second animal. In spite of this insensitive assay method, one of eleven rats and two of fifteen rabbits developed tumors. Roberts (6) points out that secondary embolization of cancer cells from the lungs can supply circulating cells to the peripheral blood long after the original lodgement of cells in the lungs. Griffiths and Salisbury (2) injected 100,000 Walker 256 carcinoma cells intravenously into rats and recovered nine cells per cc. of blood 45 minutes after injection and eight cells per cc. of blood 85 minutes after injection. In cortisonized animals Moore (5) demonstrated circulating cancer cells in the blood 72 hours after intravenous administration. It appears, therefore, that there should be enough cells circulating in the vascular system for hours after intravenous injection in the animals tested to form metastases in fresh wounds if the area of incision truly represented susceptible tissue.

REFERENCES

The Lack of Growth of Intravenously Inoculated Tumor Cells in Peripheral Wounds

Jerome Vernick, Gary Garside and Everett Hoppe

Cancer Res 1964;24:1507-1508.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/24/8/1507

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.