Animals given lethal irradiation may be protected from death due to marrow failure by repopulating the marrow spaces with a sufficient number of suitable bone marrow cells (12). A number of investigators have attempted to employ this knowledge in the treatment of leukemia with the intent of destruction of the diseased marrow by irradiation and replacement with normal marrow. This paper will review some of the accomplishments that have resulted from these studies and some of the problems that are current in this field.

Studies in Mice

The feasibility of irradiation and marrow replacement in the treatment of murine leukemia has been explored in several studies. Barnes et al. (4) were able to achieve long-term survivors in CBA mice with 151/1 leukemia treated with 1500 r and marrow infusion. Hewitt and Wilson (16) used CBA mice with a different tumor and could not eradicate the leukemia with doses of 60Co irradiation of 2400 r. They were able to demonstrate a linear relation between the dose of irradiation and the logarithm of the number of remaining cells.

In evaluating the amount of X-irradiation necessary to sterilize a variety of murine leukemias Burchenal et al. (8) found that a range of 2000 to over 5000 r was needed to prevent successful transfer of the leukemia. Barnes and Loutit (5) found evidence suggesting an advantage of homologous marrow following irradiation of leukemic mice in that the marrow might react immunologically to destroy residual leukemic cells. Mathé (20) explored the utilization of the graft versus host reaction of allogenic marrow transplantation as an adjunct to total-body irradiation in the treatment of leukemia. Mice with leukemia, irradiated and given isogenic marrow, invariably died of leukemia. Mice infused with allogenic marrow generally died of secondary disease without morphologic evidence of leukemia in most cases. Transfer experiments were not done to detect the presence of latent leukemia.

From these studies of murine leukemia it would seem that X-irradiation alone, in doses in which marrow infusion can prevent death, is insufficient to eradicate most leukemias. There is a large variation in the dose of irradiation required for sterilization of different murine leukemias. Allogenic marrow may be beneficial in suppression of leukemia by virtue of the unfavorable environment created by secondary disease.

Studies in Man

Table 1 summarizes the published data on patients with acute leukemia who have been treated with whole-body irradiation and marrow infusion. Details of most of these cases are provided in other publications (24). Several aspects of these clinical studies deserve comment.

Remission of leukemia by whole-body irradiation without marrow engraftment.—Several patients with acute leukemia in terminal relapse have been given large doses of whole-body irradiation in preparation for a marrow graft. Autogenous regeneration of marrow and remission of the leukemia occurred despite failure of the marrow graft. Examples are the case of a 16-year-old girl with a 6-month remission after 325 r (38) and a 9-month-old infant with a 4-month remission after 800 r (33). Evidently, whole-body irradiation may benefit some patients with acute leukemia after conventional chemotherapy has failed.

Treatment of leukemia by whole-body irradiation with isogenic marrow infusion.—Several sets of identical twins have been studied (3, 34, 37). In each instance I twin had acute leukemia, and the other twin was normal insofar as could be determined. Three such patients were irradiated with 800-1600 r. Death from marrow failure was avoided by isogenic marrow infusion. In each instance a remission was achieved, but the improvement was followed by a discouraging early return of leukemia. These studies have shown that man can survive, with a benign clinical course, otherwise lethal doses of irradiation when protected by...
TABLE 1

SUMMARY OF SOME PUBLISHED OBSERVATIONS ON THE RESULTS OF WHOLE-BODY IRRADIATION AND MARROW INFUSION IN PATIENTS WITH ACUTE LEUKEMIA

<table>
<thead>
<tr>
<th>Author</th>
<th>Reference</th>
<th>Type of marrow</th>
<th>Evidence of homologous marrow engraftment</th>
<th>Evidence of secondary syndrome</th>
<th>Remission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrews et al.</td>
<td>1</td>
<td>Allogenic</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Arient et al.</td>
<td>2</td>
<td>Isogenic</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Atkinson et al.</td>
<td>3</td>
<td>Fetal</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Beard et al.</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinicopathologic Conference</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haurani et al.</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>King</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kuznick</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathé et al.</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>McGovern et al.</td>
<td>23</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pegg et al.</td>
<td>25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas and Ferrebee</td>
<td>31</td>
<td>15</td>
<td>4</td>
<td>3 and 1</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

* Excluded are patients dying of consequences of irradiation even though there was no evidence of leukemia at autopsy.
* See footnote 2.
* Received homologous marrow in addition.

... had acute leukemia for 2 years, controlled by chemotherapy. Shortly after relapse he was given 800 r of whole-body irradiation, followed by infusions of marrow obtained from 6 relatives. A secondary syndrome was observed but subsided after 2 months. Studies of red cell antigens, leukocytes, and skin grafting tests indicated a successful marrow graft, principally from 1 of the donors. The patient showed no evidence of recurrent leukemia after 7 months.

CURRENT PROBLEMS AND PROSPECTS

The problem of marrow preservation and procurement.—The problem of the preservation of marrow cells at low temperature seems to be solved as a practical procedure, although much work remains to be done in this interesting field of biology. The freezing of marrow cells in dimethylsulfoxide has overcome most of the problems with the glycerol technic (10). Deterioration of the frozen marrow with time does not seem to be a problem at temperatures of —80°C and below (32).

Numbers of marrow cells adequate for isogenic grafts can be obtained by multiple marrow aspirations. In our hands the yield from this procedure for a single donor has ranged from 3 to 17 X 10^8 nucleated cells. For allogenic grafts it is important to administer a larger number of cells: 10 X 10^8 for the dog (29) and perhaps 40 X 10^8 for man. A better method of procuring this number of marrow cells from a living donor is urgently needed. Cadaver marrow can be obtained in large quantity (14), but problems in finding suitable donors and in obtaining the marrow within the necessary time limits pose serious obstacles to the practical use of marrow from this source. At present, fetal marrow seems to offer no advantage over adult marrow (30).
The problem of securing permanent allogeneic marrow grafts.—Most of the information now available relative to allogeneic marrow grafts was derived from rodents, principally inbred mice. Allogeneic marrow grafts in outbred species—dog (29), monkey (41) and man—have been quite difficult to secure. In this regard, the last 2 years' experience with dogs in Cooperstown has been encouraging.

The current success rate of 40-50% in the dog suggests that the number of major histocompatibility groups may be relatively small.

The desirability of selecting this donor prior to the fact of grafting is evident.

The use of multiple donors may not always succeed (28). Table 3 shows the results of some preliminary experiments with multiple donors used in studies with the dog. Graft versus graft reactions with associated immunologic death may account for some of these failures.

The potential application of cross-circulation to problems in acute leukemia.—Cross-circulation has long been recognized as a potentially useful procedure in studying the transfer of both humoral and cellular factors between two individuals (13). In the dog, it has been shown that cross-circulation can maintain an effective leukocyte level when 1 member of the pair has received lethal radiation (40). Stored peripheral blood leukocytes have been shown to contain the cells necessary for isogenic marrow repopulation following lethal irradiation (11). Similarly, cross-circulation has resulted in allogeneic marrow regeneration in the dog after irradiation.

The indwelling silastic-Teflon cannulae developed by Quinton et al. (26) for use in hemodialysis have solved most of the technical problems associated with cross-circulation in man. In Seattle 2 pairs of patients have been subjected to cross-circulation on a total of 15 occasions without ill effect. In the 1st pair a patient with hepatic coma following acute liver failure demonstrated a dramatic recovery after cross-circulation for 2 periods of 11 and 36 hr (9). In the 2nd pair, a patient with acute marrow failure received a total of 700×10^8 leukocytes over a 13-day period with 2 hr of cross-circulation daily (9).

The potential usefulness of cross-circulation in the irradiated patient with leukemia in tiding him over the consequences of marrow aplasia, in facilitating an allogeneic marrow implantation, and in providing an immunologic environment unfavorable to the tumor remain to be studied.

REFERENCES

has offered no improvement (36). Other histocompatibility typing procedures are being studied in the dog (17). The current success rate of 40-50% in the dog suggests that the number of major histocompatibility groups may be relatively small.

Mathé's exciting case, outlined above, illustrates these points. Immunosuppressive therapy was added to the radiation treatment. The use of 6 donors permitted an *in vivo* selection of a single donor whose marrow was principally responsible for repopulating the marrow spaces.

| TABLE 2 |

| ALLOGENIC MARROW GRAFTS IN THE DOG |

All dogs were given 1500 r and an allogeneic marrow infusion. The 2nd group of dogs received methotrexate in the first 10 days after irradiation. The 3rd group of dogs also received methotrexate; in this group donors and recipients were matched for 6 red cell antigens.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of dogs</th>
<th>No. of 'takes'</th>
<th>No. of graft rejections</th>
<th>No. living beyond 150 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiation: random donor and recipient</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Irradiation and methotrexate: random donor and recipient</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Irradiation and methotrexate donor and recipient matched for RBC antigens</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

| TABLE 3 |

| SURVIVAL OF IRRADIATED DOGS GIVEN INFUSIONS OF ALLOGENIC MARROW OBTAINED FROM 5, 15, AND 20 DONORS (28) |

<table>
<thead>
<tr>
<th>No. of donors</th>
<th>Recipient's marrow dose</th>
<th>Radiation dose (r)</th>
<th>Marrow dose ($\times 10^8$)</th>
<th>Methotrexate</th>
<th>Days survived</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>524</td>
<td>1500</td>
<td>26.4</td>
<td>Yes</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>913</td>
<td>1500</td>
<td>52.0</td>
<td>Yes</td>
<td>79</td>
</tr>
<tr>
<td>20</td>
<td>910</td>
<td>1500</td>
<td>74.0</td>
<td>Yes</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>914</td>
<td>74.0</td>
<td>Yes</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>909</td>
<td>74.0</td>
<td>No</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>912</td>
<td>74.0</td>
<td>No</td>
<td>13</td>
</tr>
</tbody>
</table>

The problem of securing permanent allogeneic marrow grafts.—Most of the information now available relative to allogeneic marrow grafts was derived from rodents, principally inbred mice. Allogeneic marrow grafts in outbred species—dog (29), monkey (41) and man—have been quite difficult to secure. In this regard, the last 2 years' experience with dogs in Cooperstown has been encouraging in that some $40-50\%$ of irradiated animals given allogeneic marrow have survived to become long-term radiation chimeras (35, 36). These results are summarized in Table 2. Success in these animals has been associated with a large dose of irradiation (1500 r) and a large dose of marrow (greater than 9×10^6 nucleated cells). The critical factors seemed to be (a) the addition of an immunosuppressive drug to the treatment program and (b) in the instance of success, a fortunate selection of donor and recipient of reasonable histocompatibility.

The immunosuppressive drug, methotrexate, reduced the incidence of marrow graft rejection and reduced the incidence and severity of secondary disease. Selection of donor and recipient of reasonable histocompatibility is not yet a practical procedure. Matching of red cell antigens

Bone Marrow Transplantation in Acute Leukemia

E. D. Thomas and R. B. Epstein

Cancer Res 1965;25:1521-1524.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/25/9_Part_1/1521

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.