Endometrial Changes after Prolonged Progesterone and Testosterone Administration to Rabbits

WILLIAM A. MEISSNER AND SHELDON C. SOMMERS

Departments of Pathology, New England Deaconess Hospital, Boston, Massachusetts, and Francis Delafield Hospital, New York, New York

Summary

Rabbits treated with large doses of progesterone for up to 763 days developed numerous cysts of the endometrium, sometimes associated with atypical hyperplasia. Active mammary secretion also occurred. After large doses of testosterone for up to 763 days 1 animal developed 2 adenomatous polyps of the endometrium, but there were no other noteworthy endometrial changes. Neither hormone produced significant alterations in other tissues including ovary, adrenal, thyroid, or pituitary gland. No precancerous endometrial changes or cancers were found.

Introduction

Various uterine abnormalities have been produced experimentally in rabbits by excessive estrogen stimulation in a previous study (3). These included endometrial polyps, hyperplasias, and carcinomas. The estrogen used was stilbestrol in oil. It was not considered a direct carcinogen, since a host reaction that included pituitary and adrenal cortical hyperactivity was implicated in the animals that developed endometrial carcinoma (6).

The clinical use of both progestogens and androgens has increased and often involves relatively large doses. A study was therefore undertaken to determine particularly whether progesterone and testosterone might have any long-term effects upon the endometrium similar to those of estrogen. We also wished to study abnormalities that might result in other tissues and to compare them with the experimental effects of excessive estrogen.

Materials and Methods

Female rabbits of mixed breeds were employed. They were obtained commercially, ostensibly as young virgin adults, averaging slightly over 3 kg in weight. The experiment was started with 56 animals, 19 of which were treated with progesterone, 21 with testosterone and the remaining 16 served as controls. They were maintained and fed under identical conditions; they were housed singly. All animals were observed for 10 days before beginning injections of hormones.

The progesterone preparation was hydroxyprogesterone caproate (Delalutin) which was suspended in sesame oil in a concentration of 125 mg/ml. The i.m. injections of progesterone were given on alternate weeks in doses calculated by kg weight of animal to correspond with a maximal recommended dose for humans (250 mg). Since the rabbits averaged slightly over 3 kg in weight, the average dose was about 13 mg of the progesterone preparation.

The testosterone preparation used was testosterone ethanate (Delatestryl) suspended in sesame oil in a concentration of 200 mg/ml. The dose was calculated as with the progesterone on per kg body weight of the animal to correspond with a maximal dose (300 mg) to humans; the average dose was about 15 mg.

Complete autopsies were performed on all rabbits when the animals were found dead or were sacrificed in extremis. At the end of 763 days of hormonal treatment the experiment terminated and the surviving rabbits were killed and autopsied.

Weights of the animals at intervals during life and at autopsy were recorded. After dissections performed as soon as possible after death, important solid organs were weighed and microscopic sections of the heart, lungs, trachea, spleen, pancreas, stomach, intestines, liver, adrenals, kidneys, bladder, vagina, cervix, uterus, oviducts, ovaries, lymph nodes, thyroid, skin, breasts, bone, bone marrow, brain, and pituitary were examined, stained routinely with hematoxylin and eosin. Slides were examined and reviewed by both investigators independently.

Pituitary cell counts of 25 anterior lobes were made, using Pearse’s PAS trichrome stain and counting about 3200 cells per case.

Results

The duration of treatment to time of death of the animals varied from 178 to 763 days in the progesterone-treated group and from 54 to 763 days for the testosterone-treated group (Table 1). The controls were followed from 47 to 636 days. In 1 control animal the tissues were too autolyzed to allow interpretation. Nine of the 21 testosterone-treated animals and 8 of the 19 progesterone-treated animals survived the complete experiment. Since a number of animals died before the termination, it was possible to study certain changes in various stages of development.

Endometrial Changes

CONTROL ANIMALS. Secretory droplets in some of the epithelial cells were found at all ages, although not in all animals. In 1 older rabbit there was slight adenomatous hyperplasia of the endometrium and in 3 older animals there were a few cysts less

1 This research was aided by a grant from the American Cancer Society (Massachusetts Division), Inc.
TABLE 1
Observation Period (days) of Female Rabbits Treated i.m. with Progesterone or Testosterone

<table>
<thead>
<tr>
<th>Control (15 rabbits, untreated)</th>
<th>Progesterone, av. 20 mg/month (19 rabbits)</th>
<th>Testosterone, av. 30 mg/month (21 rabbits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>178</td>
<td>54</td>
</tr>
<tr>
<td>170</td>
<td>207</td>
<td>169</td>
</tr>
<tr>
<td>200</td>
<td>350</td>
<td>173</td>
</tr>
<tr>
<td>223</td>
<td>392 (2 animals)</td>
<td>231</td>
</tr>
<tr>
<td>280</td>
<td>421</td>
<td>255</td>
</tr>
<tr>
<td>294</td>
<td>502</td>
<td>438</td>
</tr>
<tr>
<td>311</td>
<td>511</td>
<td>504</td>
</tr>
<tr>
<td>369</td>
<td>552</td>
<td>552 (3 animals)</td>
</tr>
<tr>
<td>375</td>
<td>623</td>
<td>636</td>
</tr>
<tr>
<td>370</td>
<td>690</td>
<td>710</td>
</tr>
<tr>
<td>636 (5 animals)</td>
<td>703 (8 animals)</td>
<td>763 (9 animals)</td>
</tr>
</tbody>
</table>

No primary cancers of the endometrium or endocrine organs were recognized. There were, however, 2 malignant lymphomas found. One lymphosarcoma developed 178 days after the initiation of progestrone therapy; multiple organs were involved. A reticulum cell sarcoma occurred in a control rabbit 375 days after the experiment was begun. The tumor was present in spleen, adrenal, ovary, and uterus.

Discussion

The most significant finding was the development of prominent endometrial cysts after prolonged progestrone administration. The cysts themselves did not appear either hyperplastic or precancerous, but the endometrium between the cysts often showed either mild or atypical hyperplasia. The cystic changes produced in rabbits resembled somewhat the senile endometrial cystic atrophy found in women (4), termed retrogressive polyhoid hyperplasia by Novak and Richardson (5). Although the cystic endometrial changes produced by progestrone therapy were striking, they were induced only after continuous treatment with depot injections over long periods of time and involving large doses. From this experiment there is no evidence that similar results might be expected from cyclic therapy or from smaller oral or parenteral doses.

In the testosterone-treated animals the endometrium usually resembled that of the controls, but in 1 case there were 2 adenomatous polyps. These polyps were similar to those previously found after estrogenic stimulation.

Except for the expected secretory activity of the breast in the progestrone-treated rabbits (2), there were no noteworthy changes in any organs other than the endometrium. This is in contrast to findings previously reported in rabbits given large doses of estrogen where there frequently were significant changes in the ovaries, adrenal and pituitary glands. (1, 6).

Neither progesterone nor testosterone injected in oil in relatively large amounts continuously over long periods had any demonstrable carcinogenic effect. The 2 instances of malignant lymphoma were regarded as coincidental, particularly since 1 occurred in a control animal.

Acknowledgments

The hydroxyprogesterone caproate and the testosterone ethanate were supplied in part by E. R. Squibb and Sons.

References

5. Novak, E., and Richardson, E. H., Jr. Proliferative Changes in the Endometrium of Female Rabbits Treated i.m. with Progesterone or Testosterone.
Multiple small cysts in endometrium of animal treated with progesterone for 690 days. The cysts were mostly small, but larger than the cysts occasionally found in the endometrium of controls and testosterone-treated rabbits. The endometrial glands between the cysts were locally hyperplastic and distorted. X 30.

FIG. 2. Larger cysts of the endometrium in animal treated with progesterone for 763 days. The cysts contained watery fluid often with a few desquamated cells. X 30.

FIG. 3. Very large cysts in endometrium of animal treated with progesterone for 763 days. X 30.

FIG. 4. A portion of cyst wall and adjacent stroma. The cysts were lined with a single layer of cuboidal or columnar epithelium. Cilia were frequently identified. X 400.

FIG. 5. Focus of "atypical" hyperplasia in animal treated with progesterone for 392 days. Such abnormal glands were found in about half of the cases where there were endometrial cysts. X 125.

FIG. 6. Mild focal adenomatous hyperplasia of the endometrium in testosterone-treated animal after 763 days. X 125.

FIG. 7. Adenomatous polyp of endometrium in animal treated with testosterone for 763 days. The adjacent endometrium is inactive and characteristic of that found in most testosterone-treated animals, as well as in control rabbits. X 30.

FIG. 8. Progesterone treatment stimulated secretion in the developed mammary lobules and ducts. X 125.

FIG. 9. Breast tissue of control rabbits of corresponding age was inactive. X 125.
Endometrial Changes after Hormones
Endometrial Changes after Prolonged Progesterone and Testosterone Administration to Rabbits

William A. Meissner and Sheldon C. Sommers

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerres.aacrjournals.org/content/26/3_Part_1/474</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/26/3_Part_1/474. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>