New Chemotherapeutic Agents in Hodgkin's Disease

THOMAS C. HALL
The Children's Cancer Research Foundation, Boston, Massachusetts

Summary
There is a need for new agents and drug combinations in the treatment of Hodgkin's disease.

Several interesting new agents have been introduced into each of the conventional categories of tumor drugs, including streptonigrin and etiocholanolone. The relative lack of use of some of the older antimetabolites and sex steroids is due for re-examination. This may shed light on a rational basis for choosing agents to use on cell types with long life-spans and low mitotic rates.

There is a need for preclinical pharmacologic information on animal tumors which more closely resemble human lymphoproliferative tumors in terms of long life-span of the cell, marked and acquired resistance to alkylating agents.

High dose corticoid therapy in Hodgkin's disease appears to be more effective than in acute leukemia and should be more widely used. The substituted vinca alkaloids have shown practical and theoretical promise in dealing with the difficult phenomenon of acquired drug resistance. The methyldrazine derivative, ibenzyathymazine, represents a new class of effective agents.

Combination therapy has demonstrated effectiveness in prolonging remissions and there are theoretical reasons to investigate the possibility of prolonging remissions even further by such methods.

Introduction
Although there are 4 or more agents now in general use which are highly effective in the treatment of Hodgkin's disease, at present no one agent is curative for the disease and there is general agreement that new and better agents are still needed.

It can be taken as axiomatic that when 4 agents are in use, no single agent is highly effective both in inducing and maintaining remissions.

The major persisting problems that stimulate the search for better agents are lack of understanding of etiology, uncertainty concerning pathogenetic mechanisms, incompleteness of responses, and the development of resistance. In order to seek out or design an agent which will directly attack any of these problems, more fundamental knowledge is needed than is currently available.

Animal screens have helped to select effective agents with a fair degree of predictability for the human disease. Such screens have not been studied sufficiently at the cellular level to enable us to understand the pharmacologic basis for drug action. For example, many of the transplanted lymphocytic tumors used in the screen have rapid mitotic rates and short division times and are sensitive to antimetabolites. These cells may not be optimally comparable to human lymphoproliferative diseases which seem to involve long-lived, slowly dividing lymphocytes which are not so sensitive to antimetabolites. A different and more useful type of screening data might come out of the use of some slow-growing rodent lymphomas.

Alkylation Agents
The ones under trial are for the most part derivatives of current compounds (Table 1). In previously untreated diseases, the responses are about as frequent as those reported for other members of the mustard family. The qualitative differences in the antileukemic effect between cyclophosphamide and other nitrogen mustards has reemphasized the possibility of finding an alkylating agent which will be considerably more effective in Hodgkin's disease than the current ones. The superior effect of all alkylating agents upon lymphocytes and in most lymphoproliferative malignancies and the differential effects of the methanesulfonate upon granulocytes need more study at the cellular pharmacologic level.

Antimetabolites (Table 2)
The use of antimetabolite agents in the treatment of lymphoma has been infrequent, and the results are scant, and on the average, unimpressive. In this sense they are "old" drugs and not currently under study. However, the reasons for their lack of effect might, if better understood, allow modifications of the method of administration which would give them a "new look."

The early successful use of these agents in acute leukemia may have led to their premature discontinuation since solid tumor responses were much less frequent. A response rate of 25% in Hodgkin's disease for the antifols has been reported since their introduction, but recent studies with different methods of drug administration may permit higher responses to be achieved. The antipyrimidines and antipurines have been only superficially studied in the lymphomas, and a true response rate has yet to be established. Since the life-span of a lymphocyte is apparently much longer than that of a granulocyte, the division time may also be very long and the use of antimetabolites may be, pari passu, less effective than in the case of more rapidly dividing cells which have a complete complement of the target enzymes involved in nucleic acid biosynthesis. Data from our laboratory indicate that in the case of 5-fluorouridine and 6-mercaptopurine, which must be metabolized to nucleotides before they can be optimally comparable to human lymphoproliferative diseases, involvement in nucleic acid biosynthesis.
Drug induction of folic reductase in malignant lymphocytes has not been possible to date (42). We are currently beginning to study the changes in enzymatic pattern and drug metabolism induced in vivo by phytohemagglutinin. Such changes might be useful in inducing a state of antimetabolite sensitivity.

Antibiotics (Table 3)

These products represent the bulk of materials studied in the ongoing empiric search for new agents. Because they are produced in large numbers, and the number of human patients on whom they can be tried early is finite, the need is great both for an understanding of their cellular pharmacology and for an improved animal screening system which will predict for antitumor response in man. In addition to the drug-sensitive tumors now in use, a group of alkylating agent-resistant tumors would be very helpful in screening for agents which might be useful in patients who had failed to respond to or relapsed on mustards. The studies which have been made of the mechanism of action indicate that most of these agents have direct and powerful effects upon nucleic acids. Mitomycin C and streptonigrin have been suggested to act as biologic alkylating agents.

The indication that nucleic acids may be drug sensitive and the life of the lymphoid cell dependent upon them even though it may not be dividing opens an area for potential useful therapeutic investigation. There are a large number of antibiotics under study outside of the United States, particularly in Japan and Eastern Europe, which might profitably be the subject for international collaboration. Many of them are devoid of myelosuppressive effects and might be of interest in patients with advanced disease and leukopenia.

Streptonigrin and its methyl ester are the most promising of the newly available antibiotic compounds; the former is already undergoing a double-blind comparison with chlorambucil in the Veterans Cooperative Group. Actinomycin C and mitomycin C have never received an adequate trial in this country. They should probably be reexamined in a total of at least 25 patients. Promising new antibiotics should have at least this number of clinical trials before being discontinued, and some trials should be made in patients who have indolent early Stage III disease, since we may miss valuable information about new drugs if they are always restricted to initial use in patients who are resistant to conventional therapy.

Steroids (Table 4)

The antilymphatic and thymolytic actions of corticoids led naturally to their early use in lymphoproliferative diseases. Since there is much evidence of a natural interrelationship between lymphoid apparatus and hormone production of several types, this area was one of interest because lymphoma control might be closely related to normal physiologic mechanisms. The corticoids were found quite effective in acute lymphatic leukemia (43) and somewhat effective in chronic lymphocytic leukemia (15, 32). At the doses usually employed, 30–60 mg of prednisone equivalent, there was also an obvious beneficial effect upon the hemolytic anemia of lymphoma. This effect is also seen in the hemolytic process seen in cancer of the breast. The use of much higher “pharmacologic” doses, comparable to the high steroid doses used in breast cancer, was undertaken in
New Chemoíherapeutic Agents

TABLE 4
STEROIDS IN HODGKIN'S DISEASE

<table>
<thead>
<tr>
<th>Agent</th>
<th>Responses reported</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenocorticotropic hormone</td>
<td>4/6</td>
<td>43</td>
</tr>
<tr>
<td>and cortisone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone (low dose)</td>
<td>2/21</td>
<td>17</td>
</tr>
<tr>
<td>Prednisone or prednisolone</td>
<td>10/10</td>
<td>46</td>
</tr>
<tr>
<td>Medrol (high)</td>
<td>19/35</td>
<td></td>
</tr>
<tr>
<td>Prednisolone (high)</td>
<td>28/53</td>
<td>29</td>
</tr>
<tr>
<td>Etiocholanolone</td>
<td>4/7 (all types of lymphoma)</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLE 5
HIGH DOSE CORTICODS IN LYMPHOMA

<table>
<thead>
<tr>
<th>Total patients evaluated</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number with Hodgkin's</td>
<td>25</td>
</tr>
<tr>
<td>Total responses</td>
<td>19</td>
</tr>
<tr>
<td>Objective changes</td>
<td></td>
</tr>
<tr>
<td>Shrinkage of nodes</td>
<td>19/31</td>
</tr>
<tr>
<td>Clearance of edema</td>
<td>4/4</td>
</tr>
<tr>
<td>Resorption of pleural fluid</td>
<td>4/6</td>
</tr>
<tr>
<td>Rise in Hb > 1 gm</td>
<td>21/32</td>
</tr>
<tr>
<td>Relief of pruritis</td>
<td>3/6</td>
</tr>
<tr>
<td>Median time to onset of response</td>
<td>2 wk.</td>
</tr>
<tr>
<td>Duration of response (wk.)</td>
<td>2-60, median 10, mean 15</td>
</tr>
</tbody>
</table>

* More than 45 mg of prednisone daily for more than 3 wk.

TABLE 6
HIGH DOSE CORTICODS—SIDE EFFECTS

<table>
<thead>
<tr>
<th>Infection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td>5</td>
</tr>
<tr>
<td>Monilial</td>
<td>4</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>7</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>5</td>
</tr>
<tr>
<td>Pain</td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td>2</td>
</tr>
<tr>
<td>Soft tissue</td>
<td></td>
</tr>
<tr>
<td>Acne</td>
<td>6</td>
</tr>
<tr>
<td>Moonface</td>
<td>9</td>
</tr>
<tr>
<td>Hirsutism (female)</td>
<td>1</td>
</tr>
<tr>
<td>Central nervous system—transient psychoses</td>
<td>3</td>
</tr>
</tbody>
</table>

* Thirty-five patients.

TABLE 7
MISCELLANEOUS AGENTS IN HODGKIN'S DISEASE

<table>
<thead>
<tr>
<th>Agent</th>
<th>Responses reported</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desacetyl vinblastine</td>
<td>3/7</td>
<td>1</td>
</tr>
<tr>
<td>(dimethylaminocacetate) sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalanilide</td>
<td>6/18 (1/18 over 1 mo)</td>
<td>41</td>
</tr>
<tr>
<td>(Burkitt tumor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylglyoxal-bis-guanilydrazone</td>
<td>2/4</td>
<td>21</td>
</tr>
<tr>
<td>Methylglyoxal-bis-guanilydrazone</td>
<td>4/4 (2/4 significantly improved)</td>
<td>47</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>0/5</td>
<td>6</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>1/2</td>
<td>30</td>
</tr>
<tr>
<td>Desacetyl methylcolchine</td>
<td>6/6</td>
<td>50</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>Antipyretic</td>
<td>59</td>
</tr>
</tbody>
</table>

Miscellaneous Agents (Table 7)

The vinca alkaloids have been the most effective agents introduced during the past several years. Velban has achieved a definite 2nd place in the management of Hodgkin's disease. At present, the status of vincristine is less clear, with some indications that, although active, it may be less effective in Hodgkin's disease. The results of the current protocol studies will be of help in clarifying this. There are a number of other natural vinca alkaloids, such as vinleurosine and vinrosidine, which have not been shown to have antilymphoma activity equal to that of Velban, and at present none have been studied extensively. Desacetyl vinblastine 4-(N,N-dimethylaminocacetate) sulfate is the 1st of a series of modified vinblastines to undergo drug areas that most needs increased attention in both biochemical and clinical pharmacology.

The marked susceptibility of normal and malignant lymphoid tissue to the action of corticoids has been attributed to effects on cell membranes. If this is indeed a primary locus of cytotoxic action in rather slowly dividing cells, many of the concepts relating cell-killing effect and division times may have to be revised.

We treated 54 patients with lymphoma, who were resistant to other forms of therapy, with high doses of corticoids. Thirty-five of these received initial daily doses of 45-1000 mg of prednisone or equivalent, for at least 3 weeks. Nineteen of these patients achieved definite, objective remissions. These lasted from 2 to 60 weeks, with a median duration of 10 weeks and a mean duration of 16 weeks. This is the same remission duration reported for ibenzmethyzine. The character of the responses is shown in Table 5. The side effects encountered with the high doses of corticoids involved were late in onset and well tolerated (Table 6). No drug-associated deaths were encountered, and hyperglycemia was easily controlled with oral antidiabetic preparations or small doses of insulin. All patients with gastrointestinal discomfort or bleeding responded to diet and antacids. These results are suggestive of a direct antitumor effect for the corticoids, which may be of some value in clinical management of the advanced patients.

There have been few studies reported to date with other steroids, but the report by Hellman and co-workers of the effective use of etiocholanolonein against lymphoma has stimulated interest in this area. Oxylone, a compound with both corticoid and progestational activity, has also been reported as having some antilymphoma effect. A number of compounds have been screened in animals and some are active. This is one of the new
TABLE 8

<table>
<thead>
<tr>
<th>Reference</th>
<th>Responses reported</th>
<th>Median duration</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>5</td>
<td>12/20</td>
<td>4 mo.</td>
<td>+</td>
</tr>
<tr>
<td>36</td>
<td>25/25</td>
<td>75 days</td>
<td>+</td>
</tr>
<tr>
<td>37</td>
<td>39/51</td>
<td>2-7 mo.</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>4/7</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>13/20</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>57</td>
<td>15/24</td>
<td>3.3 mo.</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>12/13</td>
<td>4 mo.</td>
<td>+</td>
</tr>
</tbody>
</table>

TABLE 9

<table>
<thead>
<tr>
<th>Agents</th>
<th>Dose</th>
<th>Responses reported</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray +</td>
<td>4000 r between chemotherapy</td>
<td>13/14 + prolonged remission</td>
<td>7</td>
</tr>
<tr>
<td>Cytoxan +</td>
<td>600 mg/sq m/wk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincristine +</td>
<td>1.2 mg/sq m/wk.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methotrexate +</td>
<td>30 mg/sq m/twice weekly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone.</td>
<td>40 mg/sq m/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HN2 + X-ray</td>
<td>0.4 mg/kg 2500-3000 r</td>
<td>8/13 surviving 5-14 yr. (Stages 1, 2)</td>
<td>24</td>
</tr>
<tr>
<td>Vinblastine + Chlorambucil</td>
<td>0.1 mg/kg wk. + 4 mg/day</td>
<td>13/16 (prolonged remissions, mean 7.5+ mo.)</td>
<td>34</td>
</tr>
</tbody>
</table>

The methylhydrazine derivative, ibenzmethyzine, or Natulan, is the most interesting newcomer in the area of uncategorized agents which are useful in Hodgkin's disease. Its mode of action is not known; it has been suggested to release H$_2$O$_2$ or to undergo an in vivo conversion to an alkyating agent. Table 8 summarizes some of the reports in the literature about the agent. It seems to have no cross resistance with other agents, and to induce remissions of good quality with respectable frequency. Its ultimate place in the management of Hodgkin's disease is still under study and awaits comparative trials with standard agents. Three areas of interest and concern are the reports of a high degree of carcinogenicity in rodents, a potent myelosuppressive capacity, and the central nervous system manifestations of depression and somnolence.

Drug Combinations

The existence of a 70% 5-year survival rate after the surgical removal of localized Stage I lymphoma may be taken as presumptive evidence of an early localized and curable phase of the disease (33). The "curative" use of intensive local radiotherapy reinforces this concept (44). Combination therapy for more extensive disease is attractive because of the existence of a number of effective drugs which may have different modes of action, and may be additive. The versatility of the Hodgkin's cell in developing drug resistance to all currently available agents might be circumvented by drug combinations. Hence, destruction of all the cells in Hodgkin's disease may likely result in cure, and anything less than complete destruction will surely result in ultimate relapse (54). The difficulties with the multiple therapy approach are also formidable—all of the agents are myelosuppressive, all impair the immunologic responses of the host, and many are in themselves carcinogenic in animals.

The 1st combinations used involved X-ray therapy plus nitrogen mustard, and although cures were not found, Karnofsky and co-workers seemed to have significantly prolonged the duration of response in their series (Table 9). Massive doses of prednisone plus X-ray therapy have been employed by Kaplan and his associates, with initially promising results. The combination of vincristine, prednisone, cytoxan, and methotrexate with or without radiation therapy as used by the National Cancer Institute group has apparently also resulted in major prolongation of unmaintained remissions to 16 months in all but 2 of the patients in the series.

References

5. Brenner, K. W., and Young, C. W. A Methylhydrazine Deriva-
tive in Hodgkin's Disease and Other Malignant Lymphomas
6. Davia, P. Phase II Studies of Hydroxyurea (NSC 32065) In
Adults: Multiple Myelomas and Lymphomas. Cancer Chemother.
7. DeVita, V. T., Jr., Mooseley, J. H., III, Brace, K. C., and Frey,
M. Intensive Combination Chemotherapy and X-Irradiation in
8. Dietrich, F. S., Cope, C., Rivers, S., Krantz, S., Baum, B.,
Beck, H. J., and Rodensky, P. L. Clinical Trial with Alamine
No. 63-4161).
10. Eckhardt, S., and Hartai, F. Clinical Experiences with R 49.
11. Esteréez, L. A., and Aggio, M. C. Mostoza nitrogenate mani-
tada in el tratamiento de pacientes neoplasicos. Semana Med.
12. Falkson, G. H., de Villiers, P. C., and Falkson, II. C. N-Isopropyl-
ol-alpha-(2-methylhydrazino-p-toluamide Hydrochloride
(NSC 77213) for Treatment of Cancer Patients. Cancer Chemother.
13. Frank, W., and Osterberg, A. E. Mitomycin C (NSC 26980)—
An Evaluation of the Japanese Reports. Cancer Chemotherapy Rept.,
14. Frei, E., III., Spurr, C. L., Brindle, C. O., Selawry, O.,
Holland, J. F., Rall, D. P., Wasserman, L. R., Hoogstraten,
B., Schneider, B. I., McIntyre, O. R., Matthews, L. B., and
Miller, S. P. Clinical Studies of Dichloromethotrexate (NSC
15. Freymann, J. G., Vander, J. B., Marler, E. A., and Meyer-
D. G. Prolonged Corticosteroid Therapy of Chronic Lympho-
cytic Leukemia and the Closely Allied Malignant Lymphomas.
16. Gerhartz, H. Contributions to the Biological and Clinical
Effect of a Methylhydrazine Derivative: Clinical Observa-
tions Ia. In: P. A. Plattner (ed.), Chemotherapy of Cancer,
17. Gorden, B. M., and Dunning, M. G. Steroid Therapy in
18. Graf, F., and Takaesi-Nagy, L. The Therapeutic Value of
1,6-Bis-(betamethoxyethylamino)-1,6-dideoxy - 1 - man-
nite-dichlorohydrate in Clinical Practice. Therapia Hung.,
19. ———. The Therapeutic Value of 1,6-bis-(betamethoxy-
ethylamino) - 1 - 6 - dideoxy - 1 - mannite-dichlorohydrate in
20. Hellman, L., Zumin, B., Cohn, M. L., Sakamoto, A., Francis,
K. C., Clark, D. G. C., Fukushima, D. K., and Gallagher,
T. F. An Antitumor Property of Ethiocholanolone in Man.
21. Holland, J. F., Regelson, W., Selawry, O. S., and Costa,
G. Methylglyoxal Bis-guaiylhydrazone—An Active Agent
Against Hodgkin's Disease and Acute Myeloblastic Leu-
22. Humphrey, E. W., and Dietrich, F. S. Clinical Experience with
the Methyl Ester of Streptonigrin (NSC 45384). Cancer Chemother.
ies of Human Pharmacology. Ibid., 8: 3-7, 1959.
24. Karsnolsky, D. A., Miller, D. G., and Phillips, R. F. Role of
Chemotherapy in the Management of Early Hodgkins Disease.
25. Kassirski, J. Les préparations chimiques dans le traitement
26. Kenis, Y. Contributions to the Biological and Clinical Effect
of a Methylhydrazine Derivative: Clinical Observations Ib.
In: P. A. Plattner (ed.), Chemotherapy of Cancer, pp. 219-
27. Kleibel, F. Clinical Experience with Palliative Tumor Treat-
ment with Triethylenemino Benzoquinone (Trenimon).
of Disseminated Cancer. Cancer Chemotherapy Rept., 32:
29. Kofman, S., Perlia, C. P., Boesen, E., Eisenstein, R., and
Taylor, S. G. The Role of Corticosteroids in the Treatment
30. Krakoff, I. H., Sovel, H., and Murphy, M. L. Phase II Studies
of Hydroxyurea (NSC 32065) in Adults: Clinical Evaluation.
31. Kuchkarev, R. N. Preliminary Results of Clinical Testing with
of Prednisone and Prednisolone in the Treatment of Malignant
Lymphoproliferative Disorders. Ann. Internal Med., 57:
33. Lacher, M. J. The Role of Surgery in Hodgkin's Disease. New
34. Lacher, M. J., and Durant, J. R. Combined Vinblastine and
35. Loo, R. U., Brennan, M. J., and Talley, R. W. Clinical Phar-
36. Martz, G. Clinical Results with a Methylhydrazine Deriva-
37. Mathé, G., Schneider, M., Cattan, A., Amiel, J. L., and
Schwarzenberg, L. Clinical Trials with Methylglyoxal-bis
(guanylhydrazone) and with N-Isopropyl-alpha-(2-methylhy-
drazino)-p-toluidine in Various Leukemias and Hematocar-
comas. Ibid., pp. 204-211.
38. Mayevsky, M. M., Kutekharev, R. N., Romanenki, E. A.,
Urasova, A. P., Molkov, Y. N., Timofeyevskaya, E. A.,
Bondareva, A. S., Masayeva, V. G., Talyssine, V. A., and
Vyasova, O. I. Tumor Inhibiting Action of Olivomycine (16749)
and Antibiotic 2703 (Chrysomallin). Experimental and Clinical
Observations. Acta Unio Intern. Contra Cancrum, 80:
apeutic Effects and Complications of Actinomycin D in
2811, 1961. (Quoted by J. R. Sampey, Med. Times, 92:
571, 1964).
41. Oettgen, H. F., Clifford, P., and Burchenol, J. H. Malignant
Lymphoma Involving the Jaw in African Children: Treatment
with 2-chloro-4',4"-di-2-imidazolin-2-ylterephthalanilide Di-
42. Oettgen, H. F., Clifford, P., and Burkitt, D. Malignant
Lymphoma Involving the Jaw in African Children. Treatment
With Alkylyating Agents and Actinomycin D. Cancer Chemother-
43. Pearson, O. H., and ElieL, L. P. Use of Adrenocorticotropic
Hormone (ACTH) and Cortisone in Lymphoma and Leukemia.
44. Peters, M. V. Current Clinical Concepts: Hodgkin's Disease:
45. Planuelles, J. J., Solovyeva, Y. V., Belova, Z. N., Silaev, A. B.,
Ebert, M. K., Gracheva, N. P., Karitonova, A. M., Gosheva,
A. E., and Akopyants, S. S. "Aurantin"—A Complex Anti-
biotic Substance of the Actinomycin Group: Its Properties
and Results of Clinical Trials on Various Types of Neo-

46. Ranney, H. M., and Gellhorn, A. The Effect of Massive Pred-
nisone and Prednisolone Therapy on Acute Leukemia and

47. Regelson, W., and Holland, J. F. Clinical Experience with
2-Methylglyoxal bis (guanylhydrazone) dihydrochloride: A
New Agent with Clinical Activity in Acute Myelocytic Leu-
kemia and the Lymphomas. Cancer Chemotherapy Rept., 27

Ester of Streptonigrin (NSC 45384) in the Treatment of Malign-

49. Roberts, B. D., and Hall, T. C. Folic Reductase Content of

50. Santos-Silva, M. Experiences with Thiocolocran in the
Chemotherapy of Various Types of Cancer. Rev. Brasil Cance-
ral, 18: 65, 1963. (Cancer Chemotherapy Abstract 64-3034.)

51. Savnik, L. Degranol and Other Chemotherapeutic Agents.

52. Shanbrom, E., and Miller, S. Critical Evaluation of Massive
Steroid Therapy of Acute Leukemia. New Engl. J. Med., 266:

54. Skipper, H. E., Schnabel, F. M., Jr., and Willeox, W. S. On
the Criteria and Kinetics Associated With the Curability
Experimental Leukemia. Cancer Chemotherapy Rept., 55:

55. Spear, P. W. Clinical Trial with Mithramycin. Cancer Chem-

56. Sullivan, R. D., Miller, E., Zurek, W. Z., and Rodriguez, F. R.
Clinical Effects of Prolonged (Continuous) Infusion of Strep-
tonigrin (NSC 45383) in Advanced Cancer. Ibid., 55: 27–43,
1963.

57. Todd, I. D. H. Natulan in Management of Late Hodgkins,
Other Lymphoreticular Neoplasms, and Malignant Melano-

58. Wu, H. H., Chow, C. C., Sun, Y., and Seng, H.-Y. A Prelimi-
nary Clinical Report on the Efficacy of N-Formyl Sarcolysin
in the Treatment of Some Malignant Diseases. Acta Unio-

59. Young, C. W., MacDonald, R. N., and Karnofsky, D. Observa-
New Chemotherapeutic Agents in Hodgkin's Disease

Thomas C. Hall

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/26/6_Part_1/1297

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.