Radiosensitivity of Drug-resistant L1210 Leukemia

RALPH E. JOHNSON

Radiation Branch, National Cancer Institute, NIH, Bethesda, Maryland

Summary

The radiation response of murine L1210 leukemia was examined. Radiation dose-survival curves demonstrated that nondividing (resting) leukemic cells and logarithmically proliferating leukemic cells were equally radiosensitive. A radiosensitive state was also demonstrated for 2 drug-altered leukemia cell lines, 1 strain being markedly resistant to antimetabolite therapy and the other having a decreased growth rate following exposure to an alkylating agent. These studies indicate that cross-resistance does not exist in this experimental system under conditions where drug resistance is present.

Introduction

The therapy of human acute leukemia has resulted in a significant prolongation of survival. One of the encouraging achievements is the markedly increased duration of unmaintained remissions attained using combinations of chemotherapeutic agents (6). This suggests that a significant reduction in the leukemic cell populations was achieved, and there is experimental evidence that perhaps complete eradication of the cellular phase of the disease was being approached (12). Likewise, maintenance chemotherapy following remission induction has become more effective with increasing attention to dose scheduling (19). Nonetheless, it is discouraging that, with few exceptions, relapse of disease occurs following treatment. Also, autopsy studies of patients dying from secondary causes while in clinical remission of disease (normal bone marrow) have demonstrated the presence of residual leukemic infiltrates in various organ systems (16).

It is of interest to consider the theoretic possibilities explaining the failure of chemotherapy to achieve eradication of all leukemic cells. It has been shown experimentally (18) that nondividing leukemic cells in vitro are relatively resistant to antimetabolite therapy. This is expected since the effect of antimetabolites is dependent upon nucleic acid synthesis. It may be surmised that leukemic cells in vivo in a nondividing or "resting" phase or cells sublethally damaged by chemotherapy and having a decreased proliferative rate (11, 13) would also be refractory to chemotherapy. A 2nd mode of resistance relates to enzyme levels as exemplified by an increased enzyme concentration in amethopterin in resistance (15) and a deleted enzyme in 6-mercaptopurine resistance (4). A 3rd potential mechanism causing therapeutic failure is the inability to achieve adequate drug levels in certain sites. The problem of meningeal leukemia created by the blood-brain barrier is well recognized (20, 21). A similar situation may well exist with respect to tissue or lymph node aggregates of leukemic cells (3). The question of reinduction of disease by an inciting agent is perhaps academic at present since chemotherapy has not proven capable of systematically eradicating the cellular phase of leukemia in humans. Until this can be accomplished, the importance of reinduction of disease cannot be critically appraised.

In considering these explanations for therapeutic failure (and others may well exist), it seems appropriate that approaches other than further increases in drug dosages or repeated modifications of drug schedules should be considered. For example, ionizing radiation has not been critically evaluated in human acute leukemia. In a few limited clinical studies, patients have been irradiated with massive single exposures. These patients, treated in the terminal phase of their disease, received minimal benefit, although objective responses were observed (1, 9). However, the potential value of radiation (as of certain chemotherapeutic agents) in acute leukemia may be in selected phases of treatment. It may be that, rather than being clinically useful for remission induction, total body irradiation could be better exploited in remission maintenance or as part of an intensive treatment program designed to hopefully eradicate the cellular phase of the disease.

The present investigation was intended to experimentally evaluate the radiation response of a murine leukemia under conditions where drug resistance is present. To determine if cross-resistance existed, the radiosensitivity of both dividing (in vivo) and nondividing (in vitro) leukemic cells was examined. In addition, 2 drug-altered L1210 cell lines, 1 of which is markedly resistant to antimetabolite chemotherapy, were studied.

Materials and Methods

Male DBA/2 mice, weighing 20-25 gm and approximately 10 weeks old, were used in all experiments. They were housed in plastic cages in a constant temperature facility and were provided with water and laboratory chow ad libitum. The leukemia L1210 strain used is carried as an ascites line with weekly transfer i.p. Experimental mice dying were examined for gross evidence of leukemia (bloody ascites, splenomegaly, lymphadenopathy). Irradiations were performed with 2.5-mv X-rays from a Van de Graaff generator (HVL = 9.6 mm Pb). Dosimetry was performed with the ferrous sulfate chemical dosimeter, and a dose rate of 280 rads/min was used.

Radiation dose-survival curves were performed using the technic developed by Hewitt and Wilson (7) and applied by others (2) to ascites leukemia tumors. Essentially, the technic consisted of irradiating leukemia cells either in vivo or in vitro. A cell count was then performed on a tumor cell suspension prepared in ice-cold normal saline. Serial dilutions were made to bracket the inoculum concentrations where 50% of the recipient animals...
developed leukemia at each radiation (and control) dosage. From 9 to 11 normal mice were inoculated per individual dilution, and these assay mice were observed for 80 days for the development of leukemia (a single unirradiated leukemic cell produces death in approximately 15 days). The TD50 (tumor dose 50%), the number of cells required to transmit leukemia to one-half the recipient mice, was established by the Reed-Muench method (17). The ratio of the control TD50 (unirradiated cells) to the TD50 after varying radiation dosages provided the surviving fractions which defined the survival curves. A control TD50 was determined for each independent experiment, and the approximate characteristic of each survival curve has been confirmed by at least 1 independent experiment. The survival curves are described by the 2 conventional parameters, the dose reducing the surviving fraction 63% along the exponential portion of the curve (D0) and the extrapolation number (n).

Results

Survival curves were initially investigated for L1210 leukemia by irradiating leukemic cells in vivo using early (3 days postinoculation of 10^8 cells i.p.) and advanced (7 days postinoculation of 10^8 cells i.p.) tumors. It has been reported (2) for another experimental leukemia that the cells of a tumor with appreciable ascites formation are markedly hypoxic. The known dependence of radiation response on tissue oxygenation (5, 8) is depicted for leukemia L1210 in Chart 1. The oxygenated leukemic cells in the early tumor show a markedly greater radiosensitivity than for the advanced tumor with an oxygen enhancement ratio of 2.9.

Growth curve determinations using the technic of Klein and Revess (14) have shown a 3-day tumor to be in logarithmic growth phase. The survival curves for irradiation of such logarithmically proliferating cells in vivo and of nondividing cells in vitro are shown in Chart 2. The leukemic cells are well oxygenated in both situations, and the similar survival curves demonstrate that the radiosensitivity of a nonsynchronous leukemia cell population does not significantly depend on a state of active cell division. The in vitro survival curve for a slowly dividing strain isolated following exposure to cyclophosphamide suggests a degree of radiosensitivity which is at least comparable to that of the parent L1210 strain (Chart 3). The doubling time of cell line CTX 257 is 24 hr, approximately twice that of the untreated strain.

An L1210 substrain (C95K), markedly resistant to amethopterin and 6-mercaptopurine and partially resistant to cyclophosphamide, was similarly studied. Growth curves demonstrated...
Radiosensitivity of L1210 Leukemia

CELLS IRRADIATED 'IN VITRO'

\[0.00001 \quad 0.0001 \quad 0.1 \quad 1.0 \]

\[0.000001 \quad 0.0001 \quad 0.01 \quad 1.0 \]

Chart 3. In vitro irradiation of the drug-sensitive strain (L1210S) and Substrain CTX 257 isolated following cyclophosphamide exposure and having a decreased growth rate. The latter cell line is at least as radiosensitive as the parent strain. \(D_0 \), the dose reducing the surviving fraction 63% along the exponential portion of the curve; \(n \), the extrapolation number.

Table 1. Amethopterin Therapy of Early L1210 Leukemia

<table>
<thead>
<tr>
<th>Tumor line</th>
<th>Dose</th>
<th>No. of mice</th>
<th>Median survival time</th>
<th>70 day survivors</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1210S</td>
<td>Control</td>
<td>50</td>
<td>14.5</td>
<td>1/50</td>
</tr>
<tr>
<td></td>
<td>125 mg/kg</td>
<td>100</td>
<td>21.0</td>
<td>33/100</td>
</tr>
<tr>
<td>C95K</td>
<td>Control</td>
<td>50</td>
<td>14.5</td>
<td>3/50</td>
</tr>
<tr>
<td></td>
<td>125 mg/kg</td>
<td>100</td>
<td>15.5</td>
<td>4/100</td>
</tr>
</tbody>
</table>

* 10^6 cells s.c. with drug given i.p. on Day 3.

C95K is a drug-sensitive cell line, and C95K, a drug-resistant mutant line.

that both the sensitive strain (L1210S) and the drug-resistant substrain have the same growth rate (doubling times of approximately 12 hr). The degree of amethopterin resistance of the C95K cell line is indicated in Table 1. A significantly reduced number of curves and minimal increase in the median survival time were obtained with the drug-resistant cell line, using the same tumor inoculum size and day of treatment and the identical drug preparation. Chart 4 shows that the radiation survival curve for this triple drug-resistant tumor is similar to the drug-sensitive strain under in vitro conditions. The survival curves were also comparable for the C95K and L1210S cell lines under oxygenated in vivo conditions.

Discussion

These studies demonstrate that there is no qualitative difference in the radiosensitivity of L1210 leukemia under certain conditions where refractoriness to chemotherapy exists. Non-dividing leukemic cells have the same radiation survival curve as cells irradiated during logarithmic growth. This relative independence of radiation effect on the proliferative state contrasts with the dependence of antimetabolite effect on an actively dividing tumor cell population. Likewise, no radioresistance was apparent for the triple drug-resistant substrain. It is of interest that the shoulder of the survival curves for the drug-altered cell lines (CTX 257 and C95K) appeared to be minimal or absent. The explanation for this finding, which was observed on repeated experiments, will require further investigation and confirmation in other drug-exposed cell lines.

The absence of cross-resistance to radiation under the above conditions is an experimental indication that total body irradiation may be advantageously combined with chemotherapy in the treatment of human acute leukemia. It has also been shown...
Ralph E. Johnson

experimentally (10) that radiation can eradicate leukemic cells in the central nervous system where inadequate drug concentrations are attained with systemic chemotherapy. It is therefore suggested that additional laboratory studies be undertaken to investigate the experimental basis for radiotherapy as a potential adjunct in the clinical treatment of leukemia.

Acknowledgments

The author is indebted for Mr. Walter Hardy for his skillful technical assistance. Appreciation is also expressed to Dr. Abraham Goldin and Dr. John Venditti for providing their drug-resistant L1210 leukemia strain for these studies.

References

Radiosensitivity of Drug-resistant L1210 Leukemia

Ralph E. Johnson

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerres.aacrjournals.org/content/27/2_Part_1/251</td>
</tr>
</tbody>
</table>

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/27/2_Part_1/251. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.