Further Studies on the Erythrocytic Host Response in Moloney Murine Leukemia. 
Sanford H. Vernick, Bolivar J. Lloyd, Jr., Kalman Perk, and Harvie Sims.

Transplantation of Human Cancers to Hamster Cheek Pouches. 
W. Bradford Patterson.

Brief Communications:
6-Aminonicotinamide-14C Utilization by the 755 Tumor and Host Liver Tissue. 

Growth Curves of Rauscher and Friend Murine Leukemia Viruses in JLS-V9 Tissue Culture. 


Book Reviews.
Books Received.
Announcements.

Special Announcement: Availability of Reprints of Cover Photographs

COVER LEGEND

In 1933 James Wilfred Cook (b. 1900) and his associates at the Royal Cancer (now Royal Marsden) Hospital in London isolated 1,2-benzpyrene, later designated 3,4-benzpyrene (J. W. Cook, C. L. Hewett, and I. Hieger, The Isolation of a Cancer-producing Hydrocarbon from Coal Tar, Parts I, II, and III. J. Chem. Soc., Pt. 1: 395—405, 1933). Concentrates of the active substance were prepared from pitch, and each fraction showed characteristic spectroscopic lines at 4000, 4180, and 4400 Å. Two unknown benzpyrenes, among other end products, were obtained from a low-melting-point fraction. These were shown to be 1,2-benzpyrene and 4,5-benzpyrene, the syntheses of which were accomplished by Hewett. Unlike 1,2-benzpyrene, 4,5-benzpyrene did not produce skin tumors in mice.

The studies of Cook were invaluable in establishing the extent of carcinogenic activity among hydrocarbons of the 1,2-benzanthracene group and the 3,4-benzphenanthrene group. This work led to generalizations of the correlation of molecular structure with carcinogenic effect. For a summary see: J. W. Cook, G. A. D. Haslewood, C. L. Hewett, I. Hieger, E. L. Kennaway, and W. V. Mayneord, Chemical Compounds as Carcinogenic Agents. Am. J. Cancer, 59: 219—259, 1937.

The photograph of Sir James Cook was obtained through the courtesy of Sir Alexander Haddow. A schematic of the 3,4-benzpyrene structure is shown in the accompanying illustration.