Contents

271 Electron Microscopic Studies of Suspension Cultures Derived from Human Leukemic and Nonleukemic Sources. 
L. Recher, J. G. Sinkovics, J. A. Sykes, and J. White.

286 The Effect of Nitrogen Mustard Treatment on the Deoxyribonucleic Acid of Sensitive and Resistant Ehrlich Tumor Cells. 
Oleta Klatt, John S. Stehlin, Jr., Charles McBride, and A. C. Griffin.

291 The Effects of Ferrous Ion and Dithioerythritol on Inhibition by Hydroxyurea of Ribonucleotide Reductase. 
E. Colleen Moore.

M. K. Patterson, Jr., M. D. Maxwell, and E. Conway.

301 The Ultrastructure of Target Cells and Immune Macrophages during Their Interaction in Vitro. 
Velma C. Chambers and Russell S. Weiser.

318 The Effects of Actinomycin D and Methylcholanthrene on the Cytology and RNA and Protein Synthesis in Prostatic Epithelium Grown in Vitro. 
Ilse Lasnitzki.

327 The Effect of Topical Vitamin A on Papillomas and Intraepithelial Carcinomas Induced in Hamster Cheek Pouches with 9,10-Dimethyl-1,2-benzanthracene. 
A. Polliack and I. S. Levij.

333 The Effect of Isogenic Lymphoid Cells on Primary Sarcomas in the Rat. 
R. W. Blaney.

335 Reticuloendothelial Activity during the Growth of Rat Sarcomas. 

338 Heterotransplantation of Mouse Tumors to Immunologically Paralyzed Rats. 
Nicole Suciu-Foca.

349 Influence of Estrogens and Endocrine Ablation on Duration of Remission Produced by Ovariectomy or Androgen Treatment of 7,12-Dimethylbenz[a]anthracene-induced Rat Mammary Tumors. 

353 Inhibitory Effect of D-Glucosamine and Other Sugar Analogs on the Viability and Transplantability of Ascites Tumor Cells. 
J. George Bekesi, Z. Mobnar, and Richard J. Winzler.

360 Quantitative Immunochemical Determination of the Isozymes of Aspartate Aminotransferase in Rat Livers and Transplantable Rat Hepatomas. 
J. S. Nisselbaum and Oscar Bodansky.

366 The Effect of Methotrexate on Enzymes Induced following Partial Hepatectomy. 
Rosalind Labow, Gladys F. Maley, and Frank Maley.

373 Effect of an Extract of UV-irradiated Linolenic Acid on Azo Dye Carcinogenesis. 

380 Studies on the Incorporation of L-Ethionine-ethyl-14C into the Transfer RNA of Rat Liver. 
B. J. Ortwerth and G. David Novelli.

391 Simultaneous Measurement of RNA, DNA, and Protein Synthesis in Mouse Tumor and Reticuloendothelial Tissue Slices Using Glucose-6-3H as a Common Precursor. 
G. F. Rowland.

399 Further Observations on the in Vitro 65Zn-binding Sites of Human Prostatic Tissues. 
Clifford S. Sato and Ferenc Győrkey.

403 Comparative Biologic Activities of 7,12-Dimethylbenz(a)anthracene, 7-Hydroxymethyl-12-methylbenz(a)anthracene, 7,12-Dihydroxymethylbenz(a)anthracene, and 4-Methoxy-7,12-dimethylbenz(a)anthracene in the Sprague-Dawley Female Rat. 
Katherine L. Sydnor and James W. Flesher.
The Chester Beatty Research Institute is descendant from the Free Cancer (Royal Marsden) Hospital, founded by Dr. William Marsden, in 1851, for the purposes of treatment and research. Cancer investigations were begun here in 1856: at the turn of the century, a Cancer Research and Pathology Department was established under Dr. Alexander Paine. In 1909 the department was reconstituted as the Cancer Hospital Research Institute, which was removed to a separate building two years later. The Institute of Cancer Research of the Royal Cancer Hospital was again enlarged in 1939 when new quarters were provided at Fulham Road (S. W. 3). This facility became known as the Chester Beatty Research Institute in honor of its benefactor and patron, Sir Alfred Chester Beatty (b. 1875).

Alexander Haddow (b. 1907 in Scotland) was appointed fourth Director of the Chester Beatty Institute in 1946. Classic contributions from the Institute include Leitch's work on the latency of tumor induction through coal tar applications to mouse skin and the carcinogenic effect of shale oil ("mule skinners' cancer"). The pioneer studies on hydrocarbon carcinogenesis by Ernest Kennaway, third Director, and his coworkers took place here. Under Haddow, the Institute has undertaken fundamental explorations on the mechanisms of carcinogenesis, aimed at "a kind of synthetic comprehension of the carcinogenic process in general" (J. Am. Med. Assoc., 201: 715–716, 1967), and has been in the forefront of investigations on the chemotherapy of cancer. For a review see: Bruning, D. A., and Dukes, C. E., The Origin and Early History of the Institute of Cancer Research of the Royal Cancer Hospital. Proc. Roy. Soc. Med., 58: 33–36, 1965.

The photograph of Haddow is reproduced from a Lotte Meitner Graf original. Also shown are the Cancer Institutes of the Royal Cancer Hospital as they appear today. We are indebted to Sir Alexander Haddow for submitting the illustrations.
Cancer Research

29 (2)


<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: <a href="http://cancerres.aacrjournals.org/content/29/2.citation">http://cancerres.aacrjournals.org/content/29/2.citation</a></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at <a href="mailto:pubs@aacr.org">pubs@aacr.org</a>.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at <a href="mailto:permissions@aacr.org">permissions@aacr.org</a>.</td>
</tr>
</tbody>
</table>