Contents

497 The Effect of Treatment with a Combination of 6-Mercaptopurine and Porfiromycin on an Established Friend Leukemia Virus Infection.
 Robert W. Sidwell, Glen J. Dixon, Patricia Compton, and Frank M. Schabel, Jr.

503 The Effects of Schedule and Dose of 7,12-Dimethylbenz(a)anthracene on the Induction and Growth of Mammary Carcinomas in Sprague-Dawley Female Rats.

506 Molecular Site of Substituents of Benz(a)anthracene Related to Carcinogenicity.
 John Pataki and Charles Huggins.

510 The Inhibition of DNA Synthesis by Initiators of Mouse Skin Tumorigenesis.
 Henry Hemmings and R. K. Boutwell.

515 An Immunochemotherapeutic System for the Treatment of a Transplanted Moloney Virus-induced Lymphoma in Mice.
 J. P. Glynn, B. L. Halpern, and A. Fefer.

521 The Inhibitory Effect of 3-Methylcholanthrene on Nucleolar Alterations Induced in Rat Liver Cells by 3'-Methyl-4-dimethylaminoazobenzene.
 Mary T. O'Hegarty and John W. Harman.

529 Toxicity Studies in Mice Treated with 1-β-D-Arabinofuranosylcytosine (ara-C).

536 Comparison of Soluble RNA Methylase Capacity in Paired Neoplastic and Nonneoplastic Cell Lines in Vitro.
 R. Gantt and V. J. Evans.

542 The Metabolic Interrelationship and Physicochemical Analysis of C-reactive Protein and Hepatic Catalase.

549 Liver Growth Associated with the Induction of Demethylase Activity after Injection of 3-Methylcholanthrene in Immature Rats.
 Thomas S. Argyris and Donald L. Layman.

554 The Teratogenic Effects of 5-Fluorocytosine in the Rat.
 Shakuntala Chaube and M. L. Murphy.

558 Effects of 4-Nitroquinoline-N-oxide on RNA Synthesis.
 J. S. Paul, R. C. Reynolds, and P. O'B. Montgomery.

571 Coordinated Changes in Biochemical Patterns: The Effect of Cytosine Arabinoside and Methotrexate on Leukocytes from Patients with Acute Granulocytic Leukemia.
 DeWayne Roberts, Thomas C. Hall, and David Rosenthal.

579 Large-Scale Fractionation of Cigarette Smoke Condensate for Chemical and Biologic Investigations.
 A. P. Swain, J. E. Cooper, and R. L. Stedman.

584 Bioassay of Major Fractions of Cigarette Smoke Condensate by an Accelerated Technic.

588 Vertical Transmission of Murine Leukemia Virus.

596 Vertical Transmission of Murine Leukemia Virus through Successive Generations.

 G. Caroline Engle, Shigekuni Shirahama, and Ray M. Dutcher.

610 Further Studies on Inhibition and Adaptation of a Parental Tumor in F1 Hybrid Mice.
 Richard P. Huemer.
Nucleotide Formation from α- and β-2′-Deoxythio-
guanosine in Extracts of Murine and Human Tissues.
Amnon Peery and G. A. LePage.

Phorbol Ester Tumor-promoting Agents and Mem-
brane Stability.
Andrew Sivak, Frances Ray, and Benjamin L. Van
Duuren.

A Comparative Cytologic Study of the Cultivation of
Hepatomas of Different Growth Rates.
Hisaya Watanabe and Edward Essner.

Additional Studies of Interferon Production by Hu-
man Leukemic Leukocytes in Vitro.
S. H. S. Lee, C. E. vanRooyen, and R. L. Ozere.

“Virus-free” Renal Tumors Obtained from Prehiber-
nating Leopard Frogs of Known Geographic Origin.
Joseph Zambernard and Robert Gilmore McKinnell.

The Morphology and Growth Characteristics of Radia-
tion-induced Epithelial Skin Tumors in the Rat.
R. E. Albert, M. E. Phillips, P. Bennett, F. Burns, and
R. Heimbach.

The Proportionality of Glutaminase Content to
Growth Rate and Morphology of Rat Neoplasms.
W. Eugene Knox, Maria L. Horowitz, and Gilbert H.
Friedell.

Combination Chemotherapy: Synergistic Inhibition of
Lymphoma L5178Y Cells in Culture and in Vivo with
6-Mercaptopurine and 6-(Methylmercaptopo)purine Ri-
bonucleoside.
A. R. P. Paterson and A. Moriwaki.

The Locus of Action of 1-β-D-Arabinofuranosylcyto-
sine in the Cell Cycle.
Myron Karon and Shigeru Shirakawa.

Observations on the Mechanism of Hemorrhagic Tox-
icity in Mithramycin (NSC 24559) Therapy.
R. W. Monte, R. W. Talley, M. J. Caldwell, W. C.
Levin, and M. M. Guest.

The Histogenesis and Biologic Behavior of Primary Hu-
man Malignant Melanomas of the Skin.
Wallace H. Clark, Jr., Lynn From, Evelina A. Berard-
dino, and Martin C. Mihm.

Reversal of Antileukemic Action and Toxicity of
1-Aminocyclopentanecarboxylic Acid in Mice by
L-Valine.
Francis J. Gregory, Stephanie F. Flint, Hans W.
Ruelius, and George H. Warren.

Transmission Experiments with Lymphocytic
Sarcoma of the Mouse.
Reiko Tokuzen and Waro Nakahara.

Antitumor Activity of Aqueous Extracts of Edi-
ble Mushrooms.
Tetsuro Ikekawa, Nobuaki Uehara, Yuko Maeda,
Miyako Nakanishi, and Fumiko Fukuoka.

Announcements.

Erratum.

COVER LEGEND

Leonell Clarence Strong (b. 1894 in Renova, Pennsylvania), for-
er Research Professor at Yale University School of Medicine, and
Director of The Springville Laboratories of Roswell Park Memorial
Institute, was the originator of many inbred strains of mice used in
cancer research. The now famous A and C or High Tumor Family
(HTF) of inbred mice were started in July 1921 at St. Stephen’s
College (now Bard College), Annandale, New York. The original
unpedigreed mice and their descendants were housed from 1921 to
1925 in a tar-paper shack. This building, shown with Strong and his
two sons, was heated by a potbelly stove. Tar paper was added for
warmth in the winter and removed during the summer. The mice
were maintained in wooden boxes and fed a diet of bread, milk, and
mixed seed.

The original matings of unpedigreed mice, obtained from various
sources, were represented by a letter of the alphabet. From the
original letters, only the F, I, and N strains exist today. The A and
B lines, both albino, were mated and from this cross arose the A
strain. The A line was crossed also to the D line, a dilute brown; the
offspring were selected for high rates of spontaneous tumors. As
shown in the pedigree, the descendants of this cross produced the C,
C3H, CHI, and CBA strains. The letters on the bottom left side of
the pedigree squares represent the line; the numbers on the right,
the age when a spontaneous tumor first appeared in the mouse. The
pedigree represents the direct descent of the first few generations of
the C Family. Hundreds of collateral lines were not maintained or
shown in the pedigree.

With the exception of a few father-to-daughter matings in the
early pedigrees, all matings were strictly brother to sister, for over
100 generations. In terms of human generations, a comparable
genealogy would span over 3500 years.

The strains, once developed, were disseminated among many
investigators. Today there are hundreds of subslines scattered
throughout the world. In a 17-month period, from December 1966
to April 1967, approximately 840 publications appeared in the
world literature, using mice as a research tool. Of these papers, 43%
depended on the use of one or more strains of mice first developed
in the old tar-paper shack.

The pedigree is reproduced from Cancer Res., 2: 531, 1942. We
are indebted to Dr. Stanley J. Mann for his assistance in the prepara-
tion of the material.

Downloaded from cancerres.aacrjournals.org on April 29, 2017. © 1969 American Association for Cancer Research.