Contents

1467 Autogenous and Virus-induced Interferons from Lines of Lymphoblastoid Cells.  
Barbara A. Zajac, Werner Henle, and Gertrude Henle.

1476 The Induction of Malignant Lymphomas and Other Tumors by 7,12-Dimethylbenz(a)anthracene in the Syrian Golden Hamster.  
Bela Toth.

1485 Selective Effects of a New Metal-complexed Azo Dye on Proteins of the Reed-Sternberg Cell.  
Balaji Mundkur and Mary Stibitz.

1498 Thymidine Phosphate Pools and DNA Synthesis after Polyoma Infection of Mouse Embryo Cells.  
Uno Lindberg, Bo A. Nordenskjöld, Peter Reichard, and Lambert Skoog.

1507 Inhibition of Nucleic Acid Synthesis by Daunomycin and Its Relationship to the Uptake of the Drug in HeLa Cells.  
Aldo Rusconi and Aurelio DiMarco.

Gad Shtacher.

1519 Transplantable Osteogenic Sarcoma in Inbred AKR Mice.  
Maurice M. Albala and Alfredo R. Esparza.

1523 Spontaneous Neoplastic Transformation of Germ-free Rat Embryo Cell Culture.  
Nehama Sharon and Morris Pollard.

1527 A Comparison of Cell Proliferation Parameters in Solid and Ascites Ehrlich Tumors.  
I. F. Tannock.

1535 An Antiserum to Ovarian Mucinous Cyst Fluid with Colon Cancer Specificity.  

1541 Effects of Hypothalamic and Amygdaloid Lesions on Development and Growth of Carcinogen-induced Mammary Tumors in the Female Rat.  
Clifford W. Welsch, James A. Clemens, and Joseph Meites.

1550 Disturbance of Energy Transfer as a Factor Promoting Changes in the Biologic Behavior of Tumor Cells.  
Andor Udvardy and Roland Holland.

1557 Increased DNA Polymerase Activity in a Series of Rat Hepatomas.  
Peter Ove, John Laszlo, Murphy D. Jenkins, and Harold P. Morris.

1562 Separation of DNA Polymerase from Rat Liver and Hepatomas.  
Peter Ove, Oliver E. Brown, and John Laszlo.

1568 A Role for Nicotinamide Adenine Dinucleotide Glycohydrolase in the Control of Glyceroldehyde-3-phosphate Dehydrogenase Activity.  
Saul Green, Areta Dobrjansky, and Oscar Bodansky.

1574 Response to Highly Purified L-Asparaginase during Therapy of Acute Leukemia.  

1581 The Thymidine-¹⁴C and -³H Double-labeling Technic in the Study of the Cell Cycle of L1210 Leukemia Ascites Tumor in Vivo.  
Robert C. Young, Vincent T. DeVita, and Seymour Perry.

1585 Genetic Determination of Differential Inflammatory Reactivity and Subcutaneous Tumor Susceptibility of AKR/J and C57BL/6J Mice to 7,12-Dimethylbenz[a]anthracene.  

1590 Actinomycin Resistance in Cultured Hamster Cells.  
René Simard and Roland Cassingena.
COVER LEGEND


Doisy, left, appears in a photograph, circa 1930; Butenandt, right, is shown in a 1937 photograph. In 1939 Butenandt shared a Nobel Prize in chemistry for his investigations on the sex hormones. Doisy’s crystallized hormone preparations are illustrated in the background; right, characteristic rhombic crystals of estrone; left, under appropriate conditions the leaflets may be obtained. We are indebted to Dr. Doisy for the illustrations of the crystallized hormone preparations (see The Preparation of a Crystalline Ovarian Hormone from the Urine of Pregnant Women. J. Biol. Chem., 86: 499–509, 1930, facing p. 505) and the photograph of himself. Dr. H. Dannenberg of the Max-Planck-Institut fur Biochemie, Munich, Germany, furnished the photograph of Dr. Butenandt.
Cancer Research


29 (8)


<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: <a href="http://cancerres.aacrjournals.org/content/29/8.citation">http://cancerres.aacrjournals.org/content/29/8.citation</a></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at <a href="mailto:pubs@aacr.org">pubs@aacr.org</a>.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at <a href="mailto:permissions@aacr.org">permissions@aacr.org</a>.</td>
</tr>
</tbody>
</table>