Contents


2456 Absence of Alkaline Phosphatase in Rat Thymic Lymphoma Induced by Murine Leukemia Virus. Ruth G. Doell and Bonnie J. Mathieson.

2458 Search for Common Antigenicities among Twenty-five Sarcomas Induced by Methylcholanthrene. Miguel Angel Basombrio.

2463 Benzoylated Diethylaminoethyl Cellulose Chromatography of Tumor and Nontumor Transfer RNA. Milton W. Taylor.


2477 Kinetics of 1-β-D-Arabinofuranosylcytosine-induced Chromosome Breaks. William F. Benedict, Natalie Harris, and Myron Karon.

2484 Correlation of Transfer RNA Methylase Activity with Growth and Differentiation in Normal and Neoplastic Tissues. David H. Riddick and Robert C. Gallo.

2493 Control of Multiplication of Uninfected Mouse Embryo Fibroblasts and Mouse Embryo Fibroblasts Converted by Infection with Murine Sarcoma Virus (Harvey). Moshe Koller.


2507 Isolation and Characterization of a Human Fetal α-Globulin from the Sera of Fetuses and a Hepatoma Patient. Shinzo Nishi.


2521 Growth Stimulation of Tissue Culture Cells Derived from Patients with Neuroblastoma. George M. Lyon, Jr.

2532 Effect of a Potent Carcinogen, 4-Nitroquinoline 1-Oxide and Its Reduced Form 4-Hydroxylaminoquinoline 1-Oxide on Bacterial and Bacteriophage Genomes. Nobuto Yamamoto, Shizuo Fukuda, and Hiraku Takebe.

2538 Influence of Tumor-Host Differences at a Single Histocompatibility Locus (H-1) on the Antileukemic Effect of 1,3-Bis(2-chloroethyl)-1-nitrosourea (NSC 409962). E. Bonmassar, G. Cudkowicz, S. Vadlamudi, and A. Goldin.


2552 The Significance of Perinatal Age Periods and the Dose of Urethan on the Tumor Profile in the MRC Rat. V. R. Choudari Kommineni, M. Greenblatt, N. Mihailovich, and S. D. Vesselinovitch.

2556 Mechanism of 3-Methylcholanthrene-induced Inhibition of Dimethylnitrosamine Demethylase in Rat Liver. Natarajan Venkatesan, Mary F. Argus, and Joseph C. Arcos.


2568 Local Vascular Changes Induced by the Cocarcinogen, Phorbol Myristate Acetate. A. Janoff, A. Klasson, and W. Troll.
This issue commemorates the establishment of the cocarcinogenesis concept by Murray J. Shear (b. 1899) and Isaac Berenblum (b. 1903).

Shear, Associate Director, Interdisciplinary Communications Program, Smithsonian Institution (Washington, D.C.), and formerly Chief of the National Cancer Institute's Laboratory of Chemical Pharmacology, reported in 1938 that a basic fraction of creosote oil enhanced the production of mouse skin tumors by 3:4-benzpyrene. He considered this fraction to be the source of a "co-carcinogen" [M. J. Shear, Studies in Carcinogenesis, V. Methyl Derivatives of 1:2-Benzanthracene. Am. J. Cancer, 33: 499-537 (esp. p. 532), 1938]. Subsequent investigations by Shear and his associates uncovered cocarcinogenic action in conjunction with other carcinogens (M. J. Shear, Studies in Carcinogenesis, VII. Compounds Related to 3:4-Benzyrene. Am. J. Cancer, 36: 211-228, 1939; S. Cabot, N. Shear, and M. J. Shear, Studies in Carcinogenesis, XI. Development of Skin Tumors in Mice Painted with 3:4-Benzyrene and Creosote Oil Fractions. Am. J. Pathol., 16: 301-312, 1940; R. D. Sall and M. J. Shear, Studies in Carcinogenesis, XII. Effect of the Basic Fraction of Creosote Oil on the Production of Tumors in Mice by Chemical Carcinogens. J. Natl. Cancer Inst., 1: 45-55, 1940).


Dr. Shear was President of the American Association for Cancer Research in 1960—1961; he appears left in an earlier photograph by courtesy of the National Institutes of Health Photographic Research Section. Right, Dr. Berenblum, ca. 1945.

Dr. Shear was President of the American Association for Cancer Research in 1960—1961; he appears left in an earlier photograph by courtesy of the National Institutes of Health Photographic Research Section. Right, Dr. Berenblum, ca. 1945.