Contents

2451 The Uptake, Distribution, and Antitumor Activity of \(1-(2\text{-Chloroethyl})-3\text{-cyclohexyl}-1\text{-nitrosourea}\) in the Murine Glioma. Victor A. Levin, William R. Shapiro, Thomas P. Clancy, and Vincent T. Oliverio.

2456 Absence of Alkaline Phosphatase in Rat Thymic Lymphoma Induced by Murine Leukemia Virus. Ruth G. Doell and Bonnie J. Mathieson.

2458 Search for Common Antigenicities among Twenty-five Sarcomas Induced by Methylcholanthrene. Miguel Angel Basombrio.

2463 Benzoylated Diethylaminoethyl Cellulose Chromatography of Tumor and Nontumor Transfer RNA. Milton W. Taylor.

2477 Kinetics of 1-\(\beta\)-D-Arabinofuranosylcytosine-induced Chromosome Breaks. William F. Benedict, Natalie Harris, and Myron Karon.

2484 Correlation of Transfer RNA Methylase Activity with Growth and Differentiation in Normal and Neoplastic Tissues. David H. Riddick and Robert C. Gallo.

2493 Control of Multiplication of Uninfected Mouse Embryo Fibroblasts and Mouse Embryo Fibroblasts Converted by Infection with Murine Sarcoma Virus (Harvey). Moshe K intoler.

2507 Isolation and Characterization of a Human Fetal \(\alpha\)-Globulin from the Sera of Fetuses and a Hepatoma Patient. Shinzo Nishi.

2521 Growth Stimulation of Tissue Culture Cells Derived from Patients with Neuroblastoma. George M. Lyon, Jr.

2532 Effect of a Potent Carcinogen, 4-Nitroquinoline 1-Oxide and Its Reduced Form 4-Hydroxylaminoquinoline 1-Oxide on Bacterial and Bacteriophage Genomes. Nobuto Yamamoto, Shizuo Fukuda, and Hiraku Takebe.

2538 Influence of Tumor-Host Differences at a Single Histocompatibility Locus (\(H-1\)) on the Antileukemic Effect of 1,3-Bis(2-chloroethyl)-1-nitrosourea (NSC 409962). E. Bonmassar, G. Cudkowicz, S. Vadlamudi, and A. Goldin.

2552 The Significance of Perinatal Age Periods and the Dose of Urethan on the Tumor Profile in the MRC Rat. V. R. Choudari Kommineni, M. Greenblatt, N. Mihailovich, and S. D. Vesselinovitch.

2556 Mechanism of 3-Methylcholanthrene-induced Inhibition of Dimethylnitrosamine Demethylase in Rat Liver. Natarajan Venkatesan, Mary F. Argus, and Joseph C. Arcos.

2568 Local Vascular Changes Induced by the Co-carcinogen, Phorbol Myristate Acetate. A. Janoff, A. Klassen, and W. Troll.
This issue commemorates the establishment of the cocarcinogene-
sis concept by Murray J. Shear (b. 1899) and Isaac Berenblum (b.
1903).

Shear, Associate Director, Interdisciplinary Communications
Program, Smithsonian Institution (Washington, D.C.), and formerly
Chief of the National Cancer Institute’s Laboratory of Chemical
Pharmacology, reported in 1938 that a basic fraction of creosote
oil enhanced the production of mouse skin tumors by 3:4-benz-
pyrene. He considered this fraction to be the source of a “co-car-
cinogen” [M. J. Shear, Studies in Carcinogenesis. V. Methyl Deriva-
532), 1938]. Subsequent investigations by Shear and his associates
uncovered cocarcinogenic action in conjunction with other car-
cinogens (M. J. Shear, Studies in Carcinogenesis. VII. Compounds
Related to 3:4-Benzpyrene. Am. J. Cancer, 36: 211-228, 1939; S.
Cabot, N. Shear, and M. J. Shear, Studies in Carcinogenesis. XI.
Development of Skin Tumors in Mice Painted with 3:4-Benzpyrene
and Creosote Oil Fractions. Am. J. Pathol., 16: 301—312, 1940;
R. D. Sall and M. J. Shear, Studies in Carcinogenesis. XII. Effect
of the Basic Fraction of Creosote Oil on the Production of Tumors
in Mice by Chemical Carcinogens. J. Natl. Cancer Inst., 1: 45—55,
1940).

Isaac Berenblum, of the Weizmann Institute of Science (Rehovot,
Israel) and formerly of the Dunn School of Pathology (Oxford Uni-
versity, England), in 1941 reported the cocarcinogenic properties
of croton oil resin (I. Berenblum, The Cocarcinogenic Action of
Croton Resin. Cancer Res., 1: 44—48, 1941). This work suggested a
multistage mechanism underlying the effect of croton oil in the de-
velopment of epidermal neoplasms (I. Berenblum, The Mechanism
of Carcinogenesis: A Study of the Significance of Carcinogenic
conclusions were independently reached by Rous and Co-
workers, from investigations of tumor regression in rabbit skin (P.
Rous and J. G. Kidd, Conditional Neoplasms and Subthreshold
Med., 73: 365—390, 1941; I. Mackenzie and P. Rous, The Experi-
mental Disclosure of Latent Neoplastic Changes in Tarred Skin.
the two-stage hypothesis of cocarcinogenic action by quantitative
studies with croton oil (I. Berenblum and P. Shubik, The Role of
Croton Oil Applications Associated with a Single Painting of a
Carcinogen in Tumour Induction of the Mouse Skin. Brit. J. Cancer,
1: 379—382, 1947; I. Berenblum and P. Shubik, A New Quantita-
tive Approach to the Study of the Stages of Chemical Carcinogen-
of the topic is available [I. Berenblum, The Two-Stage
Mechanism of Carcinogenesis as an Analytical Tool. In: P. Em-
melot and O. Mühlenbeck (eds.), Cellular Control Mechanisms
1964].

Dr. Shear was President of the American Association for Cancer
Research in 1960—1961; he appears left in an earlier photograph by
courtesy of the National Institutes of Health Photographic Re-
search Section. Right, Dr. Berenblum, ca. 1945.
Cancer Research

30 (10)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/30/10.citation

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.