Amino Acid Induction and Carbohydrate Repression of Dimethylnitrosamine Demethylase in Rat Liver

Natarajan Venkatesan, Joseph C. Arcos, and Mary F. Argus Seamen's Memorial Research Laboratory, USPHS Hospital, New Orleans, Louisiana 70118, and Department of Medicine (Biochemistry), Tulane University School of Medicine, New Orleans, Louisiana 70112

SUMMARY

Starvation of rats for 24 hr considerably enhances hepatic dimethylnitrosamine demethylase activity, and 3-methylcholanthrene pretreatment inhibits the enzyme in starved animals to the same extent as in fed animals. Determination of the kinetic constants following starvation revealed significant increase of the apparent Vmax indicating increase in the amount of demethylase. There was no significant change in the Km. Studies with actinomycin D provide strong support that starvation-induced increase is due to de novo protein synthesis, consistent with the observed increase in maximal velocity.

Ingestion of glucose markedly inhibits demethylase activity while ingestion of casein alone stimulates it appreciably, in a manner analogous to such phenomena with a few other hepatic enzymes. These results and previous data suggest that the level of dimethylnitrosamine demethylase in liver is under the control of multiple regulatory factors.

MATERIALS AND METHODS

Chemicals and Solutions, and Treatment of Animals. The sources of biochemicals and the preparation of solutions have been described previously (21). Immature, male Sprague-Dawley rats (Holtzman Co., Madison, Wis.) were used. These were fed basal diet (2) (containing here 4 mg riboflavin/kg) ad libitum for 3 to 4 days before the beginning of the treatment (at which time they weighed 55 to 70 g). Special diets of finely ground cellulose (Alphacel) or “vitamin-free” casein (both from Nutritional Biochemicals Corp., Cleveland, Ohio) or glucose (Cerelose; Corn Products Co., Englewood Cliffs, N. J.) were fed ad libitum for 24 hr before sacrifice.

DMN Demethylase Assay. The general methods of microsome isolation, demethylation reaction and assay of HCHO, and microsomal protein determination were as previously described (20). For all experiments except the kinetic studies, livers from 2 to 4 rats in each group were pooled to give sufficient microsomes. In kinetic studies, 10 to 12 rats in each group were pooled to obtain the necessary quantity of microsomes. Each reaction flask contained microsomes equivalent to 1.5 g liver, wet weight, as in other experiments; however, the incubation period was here 30 min compared to 40 min in other experiments. Solutions of DMN, freshly prepared, were added to the reaction flasks to yield concentrations of 1, 2, 5, 10, 20, 40, and 80 μmoles/10 ml reaction mixture.

1 This investigation was supported by the USPHS Research Grant CA-05793 from the National Cancer Institute and by a Grant-in-Aid from the Greater New Orleans Cancer Association, Inc. Presented in part at the Tenth International Cancer Congress, Houston, Texas, May 1970. Abstract No. 15.

2 The abbreviations used are: DAB, 4-dimethylaminoazobenzene; MC, 3-methylcholanthrene; DMN, dimethylnitrosamine (also known as N-nitrosodimethylamine).

Received April 9, 1970; accepted July 1, 1970.
RESULTS

Effect of MC on DMN Demethylation in Starved Rats. Chart 1 shows that starvation more than doubles the activity of the demethylase. Pretreatment by MC inhibits the enzyme in starved animals to the same extent as in fed animals. As the compounded result of MC-induced inhibition and starvation-induced enhancement, the activity of MC-treated starved animals lies between the activities of fed and starved rats. Under similar experimental conditions, starvation has been shown to elevate and MC administration to enhance further the liver DAB reductase level (7).

Kinetic Parameters of DMN Demethylase during Starvation. To test whether the observed increase in demethylase activity due to starvation arises from an increased amount of enzyme and/or enhanced affinity of enzyme for substrate, the kinetic parameters of DMN demethylase in starved rats were determined. Starvation did not bring about significant change in the K_m of the enzyme: fed, $[35.2 \pm 4.4] \times 10^{-5}$ M; starved, $[52.9 \pm 8.0] \times 10^{-5}$ M ($p \approx 0.10$). On the other hand, the V_{max} was appreciably elevated in starved animals: fed, 20.7 ± 1.4 mmoles HCHO/mg protein/30 min; starved, 31.4 ± 1.4 mmoles HCHO/mg protein/30 min. This represents a 51.7% increase of the V_{max} ($p < 0.001$; each value is the average of 5 experiments).

Effect of Actinomycin D on Starvation-induced Enhancement of Demethylase. Actinomycin D, a well-known inhibitor of DNA-dependent RNA synthesis, has been used in the present study to elucidate whether the starvation-induced increase in demethylase activity reflects an enhanced output of mRNA molecules and/or stabilization of already existing template. As is evident from Chart 2, when the antibiotic is administered throughout the period of fasting (at 0, 6, 12, and 18 hr), there is essentially complete blocking of the starvation-induced increase. The enzyme activities of actinomycin D-treated rats, both fed and fasted (bars C and D), are not significantly different, and the values are considerably lower than that of control animals fed ad libitum (bar A).

Effect of "Delayed Actinomycin D" on Starvation-induced Increase. In these experiments (Chart 3), the administration of actinomycin D was delayed until 6 hr after fasting began, to give sufficient time for production of mRNA and/or...
starvation was begun at 0 hr, and animals were sacrificed at 24 hr. Actinomycin D (40 μg for experiments in Chart 3A and 56 μg for experiments in Chart 3B) or 0.154 M sodium chloride—0.04 M sodium phosphate (pH 7.4) solution was given i.p. at 6 and 13 hr. Hence, each antibiotic-treated rat received in the experiments in Chart 3A a total of 80 μg actinomycin D and in Chart 3B experiments a total of 112 μg. Values represent the mean ± S.E. of 5 determinations. Probabilities for the significance of the differences between the means (for Chart 3B) are: p < 0.05 for control-fed vs. control-starved (27.0% increase) and control-fed vs. actinomycin-fed (25.6% inhibition); p < 0.01 for control-starved vs. actinomycin-starved (19.3% inhibition); p < 0.001 for actinomycin-fed vs. actinomycin-starved (37.8% increase).

The data presented in Chart 3 show that the demethylase activity of animals starved for 6 hr and then given actinomycin D is appreciably higher than that of fed animals also receiving “delayed actinomycin D,” but still notably lower than that of starved rats given only 0.154 M NaCl—0.04 M sodium phosphate solution. This is in contrast to the DAB reductase system (7), where the inducing effect of starvation displays its inhibitory effect in fasted as well as in fed rats. Further experiments will be necessary to establish whether the protein-induced increase is due, as is probable, to the replenishment of the total protein anabolic pool in these rapidly metabolizing, starved weanling animals or to the specific inducer action of certain amino acid(s).

Table 1

<table>
<thead>
<tr>
<th>Dietary regimen</th>
<th>Demethylase activity (μmoles HCHO/mg protein/40 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Starved</td>
<td>36.2 ± 2.0</td>
</tr>
<tr>
<td>Fed casein</td>
<td>59.7 ± 4.3a</td>
</tr>
<tr>
<td>II. Starved</td>
<td>44.6 ± 5.2</td>
</tr>
<tr>
<td>Fed glucose</td>
<td>17.4 ± 3.1a</td>
</tr>
<tr>
<td>III. Starved</td>
<td>43.2 ± 6.0</td>
</tr>
<tr>
<td>Fed cellulose</td>
<td>41.6 ± 4.2b</td>
</tr>
</tbody>
</table>

aHighly significant difference (p < 0.01) from the respective control group.

DISCUSSION

Increase of DMN Demethylase Synthesis during Starvation and Its Inhibition by MC. In this study with DMN demethylase, starvation enhances enzyme activity and MC displays its inhibitory effect in fasted as well as in fed rats. Several other instances (6, 7, 10) concur that, in general, microsomal enzyme inducers exert either a stimulatory or an inhibitory effect on drug metabolism, irrespective of whether
the animals have been fed or fasted for a short time (24 to 48 hr) before assay.

The increase of the V_{max} of DMN demethylation as a result of fasting for 24 hr is suggestive of either an accelerated synthesis or a lowered rate of degradation of the enzyme. When actinomycin D is administered at the beginning of fasting and thereafter until sacrifice, starvation-induced elevation of demethylase activity is completely blocked (Chart 2), indicating that enhanced synthesis of enzyme takes place during starvation. This is further substantiated in the experiments with "delayed actinomycin D," i.e., when the antibiotic administration was not begun until 6 hr after the initiation of starvation (Chart 3A and 3B). The activity in starved, delayed actinomycin D-treated rats is higher than the activity in fed, delayed actinomycin D-treated animals, but the former is, nonetheless, considerably lower than the activity in starved animals receiving only the NaCl-phosphate solution (most clearly seen in Chart 3B). It is possible, therefore, that during the 6-hr starvation (preceding the first administration of the NaCl-phosphate solution or actinomycin D), intense transcription of DNA into mRNA or stabilization of already existing mRNA molecules has occurred. In case of either of the two events, administration of actinomycin D (but not the NaCl-phosphate solution) at 6 and 13 hr after starvation began could lead to less overall mRNA production and, hence, decreased enzyme synthesis provided that some decay of mRNA takes place and is not replenished in the 18-hr period (i.e., between the first treatment with actinomycin D at 6 hr and sacrifice at 24 hr). That such decay of mRNA does indeed occur within the 18-hr period is supported by the consistent and very substantial inhibition of the demethylase by actinomycin D given 18 and 11 hr before sacrifice in rats fed ad libitum (Chart 3A and 3B). The starvation-induced greater DMN demethylase synthesis is, therefore, the consequence of enhanced transcription or greater stabilization of messenger template. Experiments with other inhibitors may permit distinguishing between the two possibilities.

Carbohydrate Repression of DMN Demethylase. While repression of enzymes by catabolites or glucose in microorganisms (1, 13, 15) is a well-known and extensively studied phenomenon, the existence of such a phenomenon in mammalian tissues has been brought to attention only recently (7, 12, 16, 19, 23). In the present study, glucose was found to inhibit DMN demethylase considerably, and it is this effect which is released by starvation. In animal tissues, glucose appears to bring about primarily a cessation of serine dehydratase synthesis and an increase of degradation of the enzyme, suggesting glucose action at the template level (8). A similar action of glucose at the level of translation has been proposed in the regulation of DAB reductase (7). By analogy, it is possible that glucose affects the regulation of DMN demethylase level at the translation step.

Amino Acid Induction of DMN Demethylase. Feeding casein alone for 24 hr causes a marked stimulation of DMN demethylase activity beyond that of starved rats. This is reminiscent of the induction of liver threonin dehydratase (16), ornithine δ-transaminase (16), and serine dehydratase (8) by the feeding of casein hydrolysate. It appears, therefore, that the observed increase in demethylase activity due to starvation actually represents the net effect of interplay between inhibition by carbohydrates and stimulation by amino acids. Such a situation is possible during starvation, when glycogen and protein stores of the animal are known to be broken down. It is possible that similar interactions between carbohydrates and amino acids occur with other drug-metabolizing enzymes. Kato (9) has reported decreased activities of several drug-metabolizing enzymes in rats receiving protein-free diet for 10 days before assay compared to activities in animals receiving low-protein ration (5% protein); the latter activity is, in turn, less than that found in animals receiving standard diet (18% protein) for the same period before sacrifice.

The observed effects of glucose and amino acids on DMN demethylase activity do not appear to be caused by hormonal changes arising from hunger. Rats fed nonnutritive cellulose ad libitum showed the same enzyme activity as starved animals. The inhibitory effect of glucose on DMN demethylase in this study is also in agreement with a recent finding (14) that feeding a carbohydrate diet free of protein protects rats against the lethal and hepatotoxic effects of DMN. While the inhibitory effect of glucose on liver DAB reductase reported by Jervell et al. (7) is the first example of glucose effect on microsomal drug-metabolizing enzymes, the present report is the first to show both the amino acid induction and the glucose repression of any such enzyme system. Thus, it seems that also the "atypical" microsomal drug-metabolizing enzymes are under the control of multiple regulatory factors, encountered thus far with other enzymes, and further research might bring more such instances to light.

ACKNOWLEDGMENTS

We are indebted to Kathryn A. Davis for expert and devoted technical assistance.

REFERENCES

Dietary Control of Enzyme Synthesis

Amino Acid Induction and Carbohydrate Repression of Dimethylnitrosamine Demethylase in Rat Liver

Natarajan Venkatesan, Joseph C. Arcos and Mary F. Argus

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/30/10/2563

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.