Contents

2081 A New Virus in a Spontaneous Mammary Tumor of a Rhesus Monkey.
Harish C. Chopra and Marcus M. Mason.

2087 Influence of Multiple Injections of Normal Syngeneic Cells on Tumor Induction in Mice.
Julius Reiner.

2089 Electron Density Studies on Quinoline Analogs of N,N'-Dimethyl-p-phenylazoaniline.
Ellis V. Brown and William H. Kipp.

2091 The Effects of 2-Acetylaminofluorene and Nitrite on Free Radicals and Carcinogenesis in Rat Liver.
Barry Commoner, John C. Woolum, Ben H. Senturia, Jr., and Jessie L. Ternberg.

2098 Induction, Histogenesis, and Isotransplantability of Renal Tumors Induced by Formic Acid 2-[4-(5-Nitro-2-furyl)-2-thiazolyl]hydrazide in Rats.
E. Ertürk, S. M. Cohen, and George T. Bryan.

2107 Occurrence of Desmosterol in Tumors of the Nervous System Induced in the Rat by Nitrosourea Derivatives.

2110 Definition of a Continuous Human Cell Line Derived from Neuroblastoma.

2119 Epizootic Reticulum Cell Sarcoma in a Sequestered Colony of Japanese Quails.
Edwin T. Nishimura, Ernest Ross, Gerrie Leslie, Hong-Yi Yang, and Y. Hokama.

2127 Islet Cell Tumors of the Pancreas Found in Rats Given Pyrrolizidine Alkaloids from Amsinckia intermedia Fisch and Mey and from Heliotropium supinum L.
R. Schoental, M. E. Fowler, and A. Coady.

2132 Prolonged Intravenous Methotrexate Therapy in the Treatment of Acute Leukemia and Solid Tumors.
Jeffrey A. Gottlieb and Arthur A. Serpick.

2139 The Ratio of Albumin Synthesis to Total Protein Synthesis in Normal Rat Liver, in Host Liver, and in Morris Hepatoma 9121.

2156 Mouse Mammary Tumor Metastases in Lung: An Electron Microscopic Study.
Robert E. Brooks.

2166 Enhancement by Tetrahydrodouridine of 1-β-D-Arabinofuranosylcytosine (Cytarabine) Oral Activity in L1210 Leukemic Mice.

2173 Comparative Effects of the Antitumor Agents 5-((Dimethyltriazoeno)imidazole-4-carboxamide and 1,3-Bis(2-chloroethyl)-1-nitrosourea on Cell Cycle of L1210 Leukemia Cells in Vivo.
Shigeru Shirakawa and Emil Frei, III.

2180 Association of Decreased Uridine and Deoxyctydine Kinase with Enhanced RNA and DNA Polymerase in Mouse Leukemic Cells Resistant to 5-Azacytidine and 5-Aza-2'-deoxyctydine.
J. Vešely, A. Čiňák, and F. Šorm.

2187 Effects of 4,4'-Diacetyldiphenylurea-bis(guanarylhydrazone) on the Incorporation of Precursors into Nucleic Acid and Protein of Leukemia L1210.
J. Souček, M. J. Ehrke, and E. Mihich.

2195 Cyclophosphamide Regimens in Rhesus Monkeys with and without Marrow Infusion.
Rainer Storb, C. Dean Buckner, Lloyd A. Dillingham, and E. Donnell Thomas.

2204 The 0 Antigenicity of Lymphoid Organs of Mice Bearing the Ehrlich Ascites Tumor.
Marvin Loring and Michael Schlesinger.

2208 Influence of Prednisolone on Moloney Leukemogenic Virus in BALB/c Mice.
Herbert T. Abelson and Louise S. Rabstein.

2213 Lymphosarcoma: Virus-induced Thymic-independent Disease in Mice.
Herbert T. Abelson and Louise S. Rabstein.

2223 Metabolic-independent Volume Changes and Mg++ Binding in Mitochondria Isolated from AH-130 Yoshida Ascites Hepatoma.
Francesco Feo and Antonio Matli.

2231 Rat Ferritin Isoproteins and Their Response to Iron Administration in a Series of Hepatic
Tumors and in Normal and Regenerating Liver
Maria Linder, Hamish N. Munro, and Harold P. Morris.

Hexokinase, Differentiation and Growth Rates of Transplanted Rat Tumors.

Radiation Dose-independent Inactivation of Isologous Mouse Lymphoma Cells by Non-specific Resistance.
Yosh Maruyama, Christopher Ceman, and Richard B. McHugh.

Invasion of Cartilage by an Experimental Rat Tumor.
A. R. Poole.

Effects of Dietary Fat and Dose Level of 7,12-Dimethylbenz(a)anthracene on Mammary Tumor Incidence in Rats.
K. K. Carroll and H. T. Khor.

Delayed Hypersensitivity and Neoplasia: in Vitro Studies with Macrophage Migration.
Terrence Steiner and Alvin L. Watne.

Invasive Tumors Induced in Rats with Actinomycin D.
Donald Svoboda, Janardan Reddy, and Curtis Harris.

Interaction of Aflatoxins B₁ and G₁ with Tissues of the Rat.

Special Announcement.

Announcements.

COVER LEGEND
The Institute for Cancer Research, Philadelphia, has its origins in the Lankenau Hospital Research Institute founded by Dr. Stanley P. Reimann, Chief Pathologist of the Lankenau Hospital. Funds donated by Mr. Rodman Wanamaker permitted the construction of a laboratory building on the hospital grounds (1925) and, in 1927, Dr. Frederick S. Hammett, a physiological chemist, was appointed Scientific Director. A supporting staff of chemists and biologists was gradually acquired. For 16 years, the Institute also maintained a summer laboratory at North Truro, Massachusetts, where marine invertebrates were utilized in the study of growth processes.

The Lankenau Hospital Research Institute soon attained worldwide recognition and outgrew its physical plant. Funds for enlargement became available through endowments and gifts and led to the creation of a new organization, the Institute for Cancer Research. A new laboratory, adjacent to the Jeanes Hospital, was constructed on land donated by the trustees of the Philadelphia Yearly Meeting of the Religious Society of Friends. In 1949, the Lankenau Hospital Research Institute and The Institute for Cancer Research, both under the direction of Dr. Reimann, took possession of the enlarged facility. At the time of Dr. Reimann's retirement in 1957, the two institutes were amalgamated into The Institute for Cancer Research, under the direction of Dr. Timothy R. Talbot, Jr. In 1961, an affiliation was established with the Jeanes Hospital, and two years later with The American Oncologic Hospital which, in 1967, entered a new building adjacent to both the Jeanes Hospital and The Institute for Cancer Research. These units now comprise The Fox Chase Center for Cancer and Medical Sciences. The Institute has maintained an affiliation with the University of Pennsylvania since 1962.

A clinical division, added to the Institute in 1964, operates an eight-bed unit at Jeanes Hospital for the study of inherited variability in selected groups of patients and its bearing on susceptibility to disease, particularly to neoplasia. In 1966, The Institute for Cancer Research became successor trustee of The Biochemical Research Foundation of Newark, Delaware, which had been established by Mr. Irenée du Pont for the conduct of basic scientific research into growth processes. Research programs in progress at the Foundation were transferred to the Institute and a major portion of the assets were used to provide facilities for their continuation. A new laboratory wing and animal colony building were completed recently, and the original Institute building is being renovated.

The Institute has grown in a half-century from a staff of three investigators, housed in a small building, to the present 12 million dollar laboratory staffed by some 300 persons, including 150 research scientists and technicians. The unifying theme remains unaltered: to arrive at an understanding of the nature, cause, and treatment of cancer through basic studies of growth and differentiation and the underlying hereditary mechanisms.

The cover illustrations show the original building of the Lankenau Hospital Research Institute of 1925 (upper right) and an aerial view of the present facilities, obtained through the courtesy of Mr. Bob Freisheim of Aerial Perspectives, Philadelphia.

30 (8)

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/30/8.citation

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.