Contents

2297 Biochemical and Pharmacological Studies with Asparaginase in Man. Takao Ohnuma, James F. Holland, Arnold Freeman, and Lucius F. Sink.

2306 Establishment of a Transplantable Ascites Variant of a Rat Hepatoma Induced by 3'-Methyl-4-dimethylaminoazobenzene. David F. Smith, Earl F. Walborg, Jr., and Jeffrey P. Chang.

2310 Increased Incidence of Spontaneous Mammary Tumors in Female Rats with Induced Hypothalamic Lesions. C. W. Welsch, H. Nagasawa, and J. Meites.

2320 Production of Leukemia and Stomach Neoplasms in Swiss, RF, BALB/c, and C3H Female Mice by Feeding 2-(5-Nitro-2-furyl)-2-thiazolylacetamide. S. M. Cohen, E. Ertürk, and J. Meites.

2346 Decreased Hydroxylation of Steroid Hormones by Liver Microsomes from Rats Bearing Walker Carcinosarcoma 256. Ryuichi Kato and Atsushi Takahashi.

2353 Accelerated Response of Hepatic DNA Synthesis to Partial Hepatectomy in Rats Treated with Growth Hormone or Surgical Stress. Frederick L. Moolten, Nancy J. Oakman, and Nancy L. R. Bucher.

2358 Inhibition of Ribonucleotide Reductase, DNA Synthesis, and L1210 Leukemia by Guanazole. R. W. Brockman, Sue Shaddix, W. R. Laster, Jr., and F. M. Schabel, Jr.

2369 Acid Hydrolase Activity in the Leukocytes of Tumor-bearing Rats. Ralph F. Kampenschmidt and Dan Wells.

2379 Mechanism of the Growth Inhibition Potentiation Arising from Combination of 6-Mercaptopurine with 6-(Methylmercaptopurine)ribonucleoside. A. R. P. Paterson and M. C. Wang.

2401 Studies on the Chemotherapy of Experimental Brain Tumors: Evaluation of 1,3-Bis(2-chloroethyl)-1-nitrosourea, Cyclophosphamide, Mitomycin C, and Methotrexate. William R. Shapiro, James I. Ausman, and David P. Rall.

2420 Effects of Cancer upon High-Density and Other Lipoproteins. Marion Barclay, Vladimir P. Skipski, Olga

Effect of Crystalline Abrin on the Biosynthesis of Protein, RNA, and DNA in Experimental Tumors.

Cellular Immunity to Rous Sarcoma in Tumor-bearing Chickens.

Hans O. Sjögren and Nils Jonsson.

Virus-like Particles in Chemically Induced Sarcomas in High- and Low-Leukemia Strains of Mice.

R. A. Liebelt, S. Suzuki, A. G. Liebelt, and M. Lane

Special Announcement: Annual Meeting of the American Association for Cancer Research, Inc.

Announcements.

COVER LEGEND

With the death of Otto Warburg on August 3, 1970, the world of cancer research lost one of its most illustrious and colorful practitioners.

Otto Heinrich Warburg was born on October 8, 1883, into a family famous in science and commerce. He studied chemistry under the great Emil Fischer and, following the receipt of the doctorate in chemistry in 1906, obtained the doctorate in medicine in 1911. Since 1931, he has been the Director of the Kaiser Wilhelm Institute for Cell Physiology in Berlin-Dahlem. In a long life devoted to studies of life processes, he has been a pioneer in the application of physicochemical principles to studies of tissue and cell metabolism. The manometric apparatus for respiratory studies that bears his name has been used so widely as to have become virtually a symbol of biochemistry. Among his epoch-making discoveries are the respiratory pigments and their associated enzymes and the nicotinamide adenine dinucleotides. He is renowned particularly for his forceful, although controversial, theories on the metabolism of cancer cells and the mechanisms of photosynthesis.

His controversial theory of respiratory impairment of cancer cells, formulated as a result of his prodigious experimental work during the 1920's, has ever since been a focal point for biochemical investigations on metabolic regulation and has for many years been a guiding principle in attempts at the chemotherapy of cancer. Perhaps no other scientist has had as much impact on cancer research. His early experimental work and theoretical considerations on cancer are collected in his monograph, which first appeared in 1926 under the title Ueber den Staffwechsel den Tumoren. Berlin: Springer, 1926. The English translation appeared in 1930 under the title Metabolism of Tumors (translated by F. Dickens). London: Arnold Constable. His unparalleled contributions to biochemistry and cell physiology have been widely recognized and cited, and he was the recipient of the Nobel Prize in 1931.

The cover photograph of Professor Warburg is reproduced from an original taken in the pre-World War II period, exact date unknown.
<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/30/9.citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>