Contents

1319 E Pluribus Unum: Presidential Address.
 James F. Holland.
1330 Proliferative Kinetics of Human Hematopoietic
 Cells during Different Growth Phases in Vitro.
 Akio Todo, Annabel Strife, Jerrold Fried, and
 Bayard D. Clarkson.
1341 Kinetic, Immunoc'iemical, and Physical Studies
 on Purified Rat Liver Adenosine 5'-Phosphate
 Deaminase after Induction with 3'-Methyl-4-
 dimethylaminoazobenzene or Thioacetamide.
 Larry D. Smith and Donald E. Kizer.
1348 Hormonal Effects on Thymidine Kinase Ac
 tivity in Normal Rat Adrenal and in Hormone-
 dependent Adrenal Carcinoma.
 M. R. Garland, Therese Ng, and J. F. Richards.
1355 Erythropoietic Effect of Plasma from Patients
 with Advanced Cancer.
 Dincer Firat and Jose Banzon.
1360 Metabolic Studies on Mammary Tumor MTW9
 following Resection of the Mammosomatotrophic
 Tumor MtTW5.
 Shibabrata Biswas and Vincent P. Hollander.
1364 Identity of Corticosteroid Binder I with the
 Macromolecule Binding 3-Methylcholanthrene
 in Liver Cytosol in Vivo.
 S. Singer and Gerald Litwack.
1369 The Anionic Nature of Sarcoma 180 Cell Surfaces,
 and Sensitivity to 4,4'-Diacytldiphenyl-
 urea-bis(guanylhydrazone).
 L. Weiss and M. T. Hakala.
1373 Pulmonary Fibroblastomas in a Deer with
 Cutaneous Fibromatosis.
 Loren D. Koller and Carl Olson.
1376 Enzymatic Phosphorylation of 1-ß-D-Arabinofuranoslyctosine.
 Yoshio Kozai and Yukio Sugino.
1383 Treatment of Moloney Virus-induced Leukemia
 with Cyclophosphamide and Specifically Sensi-
 tized Allogeneic Cells.
 John P. Glynn and Meir Kende.
1389 DNA Synthesis and the Effect of Sucrose in
 Nuclei of Host Liver and Morris Hepatomas.
 P. Ove, M. L. Coetzee, and H. P. Morris.
1396 Regulation of the Rate of Sterol Synthesis and
 the Level of ß-Hydroxy-ß-methylglutaryl Co-
 enzyme A Reductase Activity in Mouse Liver
 and Hepatomas.
 A. A. Kandutsch and R. L. Hancock.
1402 Ultrastructural Changes in Friend Erythro-
 leukemia Cells Treated with Dimethyl Sulfoxide.
 Toru Sato, Charlotte Friend, and Etienne de
 Harven.

Volume 31 / Number 10 / October 1971

1418 A Comparative Study of Some of the Enzymes
 Involved in Glucose Metabolism of Human
 Diploid and SV40-transformed Human Diploid
 Cells.
 George A. Dunaway, Jr., and Eddie C. Smith.
1422 The Effects of Phleomycin on Mouse L-Cells.
 S. J. Shuve and A. M. Rauth.
1429 Effects of Priming Dose Schedules in Metho-
 trexate Treatment of Mouse Leukemia L1210.
 Marc J. Straus, Nathan Mantel, and Abraham
 Goldin.
1434 Effects of Phorbol and Four Diesters of Phorbol
 on the Incorporation of Tritiated Precursors
 into DNA, RNA, and Protein in Mouse
 Epidermis.
 William M. Baird, Jane A. Sedgwick, and R. K.
 Boutwell.
1440 Comparison of Macromolecular Binding of
 Estradiol in Hormone-dependent and Hormone-
 independent Rat Mammary Carcinoma.
 William L. McGuire and Jo Anne Julian.
1446 Depression of Homograft Rejection and Graft-
 versus-Host Reactivity following 7,12-Dime-
 thylbenz(a)anthracene Exposure in the Rat.
 A. Tano Di Marco, Claudio Franceschi, Luigi
 Terri, and Giorgio Prodi.
1451 A Study of Leukemic Cell Injury by Physical
 Agents.
 Moriji Miura, Kohei Kawashima, Hiroshi Nishi-
 waki, Masaki Kobayashi, Akimitsu Morita,
 Ryuzo Ohno, Hisami Kakizawa, Tadaaki Uetani,
 Masami Hirano, and Kazumasa Yamada.
1457 Effect of Dopamine and 6-Hydroxydopamine
 on Mouse Neuroblastoma Cells in Vitro.
 Kedar N. Prasad.
1461 Carcinogenicity Testing of N-Hydroxy and
 Other Oxidation and Decomposition Products
 of 1- and 2-Naphthylamine.
 J. L. Radomski, E. Brill, W. B. Deichmann,
 and E. M. Glass.
1468 Influence of 3-Methylcholanthrene and Diet
 on the Binding of 2-Acetylaminofluorene and
 Its N-Hydroxy Metabolite to Rat Liver Nucleic
 Acids.
 Charles C. Irving, Thelma C. Peeler, Richard
 A. Veazey, and Ralph Wiseman, Jr.
1473 Strain Specificity in Mouse Mammary Tumor
 Virus Virion Antigens.
 Phyllis B. Blair.
1478 Irreversible Change of the Pattern of Carcino-
 genic Aminoazo Dye-binding Proteins in Rat
 Liver during Continuous Feeding of 3'-Methyl-
COVER LEGEND

Observations, from 1950 to 1953, of an unusually high incidence of amyotrophic lateral sclerosis and other neurological disorders endemic to Guam were subsequently (1963) correlated with the ingestion of cycad nut meal. This discovery was accomplished by epidemiological investigations, especially those of Leonard T. Kurland and Marjorie G. Whiting. The cycad (Cycas circinalis) is a plant indigenous to the Mariana Islands, and cycad varieties occur widely from the Japanese Archipelago to the subcontinent of India. The plant is of localized economic importance as a source of foodstuffs, fiber, and medicinal products. The studies of Kurland and Whiting suggested the possibility of the existence of a neurotoxic agent in the nut meal and edible starch extracted from cycad roots, stems, and leaves.

In 1963 Gert L. Laqueur (b. 1912, Strasbourg, France), Chief, Laboratory of Experimental Pathology at the National Institute of Arthritis and Metabolic Diseases, and his associates uncovered a carcinogenic property in the cycad. Crude nut meal from C. circinalis fed to rats failed to elicit neurological symptoms but induced cancers of the liver, kidney, and intestinal tract (G. L. Laqueur, O. Mickelsen, M. Whiting, and L. T. Kurland, Carcinogenic Properties of Nuts from Cycas circinalis Indigenous to Guam. J. Natl. Cancer Inst., 31: 919—951, 1963). This work indicated that a glycoside isolated from cycads, and known as cycasin, might yield in its metabolic breakdown a compound with a carcinogenic potential similar to that of dimethylnitrosamine (DMN). This inference was supported by comparable pathological alterations in rats fed toxic cycad nut meal and those reported for rats treated with DMN. Collateral investigations revealed that cycasin was ineffective as a hepatotoxin and a hepatocarcinogen when administered to germfree rats.

A later report by Laqueur and his coworkers showed that a metabolic degradation via β-glucosidase of bacterial origin in the intestinal tracts of rats released the aglycone, a potent carcinogen (G. L. Laqueur, E. G. McDaniel, and H. Matsumoto, Tumor Induction in Germfree Rats With Methylazoxymethanol (MAM) and Synthetic MAM Acetate. J. Natl. Cancer Inst., 39: 355—371, 1967). The aglycone of cycasin (MAM) and the synthetic aglycone acetate ester produced tumors in germfree animals, thus establishing MAM as the proximate carcinogen.

The cover illustrates a mature cycad plant; upper right, recent photograph of Dr. Laqueur (courtesy of the Information Office of the National Institute of Arthritis and Metabolic Diseases. NIH, and Mrs. Frances W. Davis, Editor, NIH Record). Professor Matsumoto is shown at lower right in a photograph supplied by Dr. Laqueur.
Cancer Research

31 (10)

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/31/10.citation

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.