Contents

1319 E Pluribus Unum: Presidential Address.
James F. Holland.

1330 Proliferative Kinetics of Human Hematopoietic Cells during Different Growth Phases in Vitro.
Akio Todo, Annabel Strife, Jerrold Fried, and Bayard D. Clarkson.

1341 Kinetic, Immunoc'hemical, and Physical Studies on Purified Rat Liver Adenosine 5'-Phosphate Deaminase after Induction with 3'-Methyl-4-dimethylaminoazobenzene or Thioacetamide.
Larry D. Smith and Donald E. Kizer.

1348 Hormonal Effects on Thymidine Kinase Activity in Normal Rat Adrenal and in Hormone-dependent Adrenal Carcinoma.
M. R. Garland, Therese Ng, and J. F. Richards.

1355 Erythropoietic Effect of Plasma from Patients with Advanced Cancer.
Dincer Firat and Jose Banzon.

1360 Metabolic Studies on Mammary Tumor MTW9 following Resection of the Mammosomatotropic Tumor MtTWS.
Shibabrata Biswas and Vincent P. Hollander.

1364 Identity of Corticosteroid Binder I with the Macromolecule Binding 3-Methylcholanthrene in Liver Cytosol in Vivo.
S. Singer and Gerald Litwack.

1369 The Anionic Nature of Sarcoma 180 Cell Surfaces, and Sensitivity to 4,4'-Diacetyldiphenylurea-bis(guanylhydrazone).
L. Weiss and M. T. Hakala.

1373 Pulmonary Fibroblastomas in a Deer with Cutaneous Fibromatosis.
Loren D. Koller and Carl Olson.

1376 Enzymatic Phosphorylation of 1-ß-D-Arabinofuranosylcytosine.
Yoshio Kozai and Yukio Sugino.

1383 Treatment of Moloney Virus-induced Leukemia with Cyclophosphamide and Specifically Sensitized Allogeneic Cells.
John P. Glynn and Meir Kende.

1389 DNA Synthesis and the Effect of Sucrose in Nuclei of Host Liver and Morris Hepatomas.
P. Ove, M. L. Coetzee, and H. P. Morris.

1396 Regulation of the Rate of Sterol Synthesis and the Level of ß-Hydroxy-ß-methylglutaryl Coenzyme A Reductase Activity in Mouse Liver and Hepatomas.
A. A. Kandutsch and R. L. Hancock.

1402 Ultrastructural Changes in Friend Erythro-leukemia Cells Treated with Dimethyl Sulfoxide.
Toru Sato, Charlotte Friend, and Etienne de Harven.

1418 A Comparative Study of Some of the Enzymes Involved in Glucose Metabolism of Human Diploid and SV40-transformed Human Diploid Cells.
George A. Dunaway, Jr., and Eddie C. Smith.

1422 The Effects of Phleomycin on Mouse L-Cells.
S. J. Shuve and A. M. Rauth.

1429 Effects of Priming Dose Schedules in Methotrexate Treatment of Mouse Leukemia L1210.
Marc J. Straus, Nathan Mantel, and Abraham Goldin.

1434 Effects of Phorbol and Four Diesters of Phorbol on the Incorporation of Tritiated Precursors into DNA, RNA, and Protein in Mouse Epidermis.
William M. Baird, Jane A. Sedgwick, and R. K. Boutwell.

1440 Comparison of Macromolecular Binding of Estradiol in Hormone-dependent and Hormone-independent Rat Mammary Carcinoma.
William L. McGuire and Jo Anne Julian.

1446 Depression of Homograft Rejection and Graft-versus-Host Reactivity following 7,12-Dimethylbenz(a)anthracene Exposure in the Rat.
A. Tano Di Marco, Claudio Franceschi, Luigi Xerri, and Giorgio Prodi.

1451 A Study of Leukemic Cell Injury by Physical Agents.

1457 Effect of Dopamine and 6-Hydroxydopamine on Mouse Neuroblastoma Cells in Vitro.
Kedar N. Prasad.

1461 Carcinogenicity Testing of 1-Hydroxy and Other Oxidation and Decomposition Products of 1- and 2-Naphthylamine.
J. L. Radomski, E. Brill, W. B. Deichmann, and E. M. Glass.

1468 Influence of 3-Methylcholanthrene and Diet on the Binding of 2-Acetylaminofluorene and Its N-Hydroxy Metabolite to Rat Liver Nucleic Acids.

1473 Strain Specificity in Mouse Mammary Tumor Virus Virion Antigens.
Phyllis B. Blair.

1478 Irreversible Change of the Pattern of Carcinogenic Aminoazo Dye-binding Proteins in Rat Liver during Continuous Feeding of 3'-Methyl-
4-dimethylaminoazobenzene.
Tsutomu Sugimoto and Hiroshi Terayama.

Histology and Ultrastructure of Cultured Human Tumor Cells Exposed to Antisera to the Nerve Growth Factor.
H. Pinkerton, B. Bhagat, M. W. Rana, and S. Holtwick.

Immunization with Chemically Modified Lymphoma Cells.
Morton D. Prager, Ina Derr, Alan Swann, and Joseph Cotropia.

Isolation, Identification, and Biological Study of Compounds Derived from 3-Methylcholanthrene by Irradiation in Dimethyl Sulfoxide.
Thomas L. Dao, Charles King, and Takeshi Tominaga.

Morphogenesis of Epithelial Neoplasms Induced in the Rat Kidney by Dimethylnitrosamine.

Reduction and Enhancement by Phenobarbital of Hepatocarcinogenesis Induced in the Rat by 2-Acetylaminofluorene.
Carl Peraino, R. J. Michael Fry, and Everett Staffeldt.

Correspondence.
I. Brodsky.

Christopher A. Reilly, Jr., and Gerd T. Schloss.

American Association for Cancer Research: Honorary Certificates of Award for 1971.
Books Received.

Special Announcement: Annual Meeting of the American Association for Cancer Research, Inc.
Announcements.

COVER LEGEND

Observations, from 1950 to 1953, of an unusually high incidence of amyotrophic lateral sclerosis and other neurological disorders endemic to Guam were subsequently (1963) correlated with the ingestion of cycad nut meal. This discovery was accomplished by epidemiological investigations, especially those of Leonard T. Kurland and Marjorie G. Whiting. The cycad (Cycas circinalis) is a plant indigenous to the Mariana Islands, and cycad varieties occur widely from the Japanese Archipelago to the subcontinent of India. The plant is of localized economic importance as a source of foodstuffs, fiber, and medicinal products. The studies of Kurland and Whiting suggested the possibility of the existence of a neurotoxic agent in the nut meal and edible starch extracted from cycad roots, stems, and leaves.

In 1963 Gert L. Laqueur (b. 1912, Strasbourg, France), Chief, Laboratory of Experimental Pathology at the National Institute of Arthritis and Metabolic Diseases, and his associates uncovered a carcinogenic property in the cycad. Crude nut meal from C. circinalis fed to rats failed to elicit neurological symptoms but induced cancers of the liver, kidney, and intestinal tract (G. L. Laqueur, O. Mickelsen, M. Whiting, and L. T. Kurland, Carcinogenic Properties of Nuts from Cycas circinalis L. Indigenous to Guam, J. Natl. Cancer Inst., 31: 919—951, 1963). This work indicated that a glycoside isolated from cycads, and known as cycasin, might yield in its metabolic breakdown a compound with a carcinogenic potential similar to that of dimethylnitrosamine (DMN). This inference was supported by comparable pathological alterations in rats fed toxic cycad nut meal and those reported for rats treated with DMN. Collateral investigations revealed that cycasin was ineffective as a hepatotoxin and a hepatocarcinogen when administered to germfree rats.

A later report by Laqueur and his coworkers showed that a metabolic degradation via β-glucosidase of bacterial origin in the intestinal tracts of rats released the aglycone, a potent carcinogen (G. L. Laqueur, E. G. McDaniel, and H. Matsumoto, Tumor Induction in Germfree Rats With Methylazoxymethanol (MAM) and Synthetic MAM Acetate. J. Natl. Cancer Inst., 39: 355—371, 1967). The aglycone of cycasin (MAM) and the synthetic aglycone acetate ester produced tumors in germfree animals, thus establishing MAM as the proximate carcinogen.

These studies were greatly assisted by the collaboration of Hiromu Matsumoto, whose group prepared synthetic derivatives of MAM (H. Matsumoto, T. Nagahama, and H. O. Larson, Studies on Methylazoxymethanol, the Aglycone of Cycasin: A Synthesis of Methylazoxymethanol, the Aglycone of Cycasin: A Synthesis of Methylazoxymethanol. Biochem. J., 95: 373—380, 1965). The aglycone of cycasin (MAM) and the synthetic aglycone acetate ester produced tumors in germfree animals, thus establishing MAM as the proximate carcinogen.

The cover illustrates a mature cycad plant; upper right, recent photograph of Dr. Laqueur (courtesy of the Information Office of the National Institute of Arthritis and Metabolic Diseases, NIH, and Mrs. Frances W. Davis, Editor, NIH Record). Professor Matsumoto is shown at lower right in a photograph supplied by Dr. Laqueur.