Prospective Study of Dog Bite and Childhood Cancer

Frank D. Norris, Edwin W. Jackson, and Edward Aaron

California State Department of Public Health, Berkeley, California 94704 [F. D. N., E. W. J.], and Los Angeles County Health Department, Los Angeles, California 90012 [E. A.]

SUMMARY

Approximately 50,000 children who were bitten by dogs have been followed for 5 or more years to assess their risk of dying from cancer. An analysis was made that measured the immediate and continuing risk of death and also allowed for a latent period and an interval between onset and death. Total observed leukemia-lymphoma deaths were less than expected until 4 or more years after the bite. Standardized leukemia-lymphoma mortality ratios for the age group 10 to 14 rose to approximately 3-fold following an interval of 4 or more years after the bite, a result which is almost statistically significant at the 5% level. However, this finding was not consistent for other age groups.

These observations provide interesting but inconclusive epidemiological support for the hypothesis that dog bite is one type of initiating event in the occurrence of leukemia-lymphoma in children. Further inquiry is needed.

INTRODUCTION

Interest in dogs and cats as possible primary hosts to an oncogenic virus that can produce human cancer has been stimulated by recent laboratory findings. Cats have been most suspect since the viral etiology of feline leukemia was established (7-9, 11) and its transmission to human embryonic living cells was achieved (6, 10, 12). An observation of feline leukemia virus has been made in the salivary glands of leukemic cats (5), which suggests that a bite or scratch could be a mode of transmission.

Evidence of virus-like particles has also been found in tumorous dogs (1), and there have been several case reports of human and canine leukemia related temporally and geographically (3, 14). Epidemiological evidence from two retrospective studies is negative, but inconclusive. Schneider et al. (13) found no significant association between human and canine cancer in the same household. Van Hoosier et al. (14)

1Supported in part by Grant CA 05924, National Cancer Institute, NIH.

Received May 8, 1970; accepted November 19, 1970.

MATERIALS AND METHODS

The study population was formed from the animal bite reports received by the Los Angeles County Health Department from 1961 to 1963 and consisted of 49,239 children under 15 years old with a dog bite. The geographic area covered in the study included all of Los Angeles County, except Los Angeles City, Pasadena, and Long Beach. The estimated average population at ages 0 to 14 in this area at the time the study children were identified was 1,051,900.

The decedents in the study population were identified through California and reallocated death certificates for persons who died at ages 0 to 19 in years 1961 to 1968 with the underlying cause of death attributed to cancer (International Classification of Diseases, Nos. 140 to 204, 7th revision) and through a list with names and birth dates of persons who were born in California but died of cancer in other states at ages 0 to 14 in the years 1961 to 1966. The matching was facilitated by use of an alphabetical index of the bite victims and was carried out independently by 2 clerks who were trained for this task.

A match was considered definite if name, year of birth, and address agreed on the animal bite report and the death certificate. In some cases in which name and year of birth but not address matched on both records, a judgment of nonmatch was made if (a) the mother's or father's name was given on both records and was different or (b) the place and duration of residence of the cancer victim precluded his having lived in Los Angeles County at the time of the bite report.

In cases of a possible match in which the name was the same...
Frank D. Norris, Edwin W. Jackson, and Edward Aaron

Table 1

Observed and expected deaths from leukemia-lymphoma and other forms of cancer in children who received a dog bite

The bite victims were identified in Los Angeles County health jurisdiction from 1961 to 1963.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Person years of experience</th>
<th>Observed/expected</th>
<th>SMR (b)</th>
<th>SMR (b) 95% CL</th>
<th>Person years of experience</th>
<th>Observed/expected</th>
<th>SMR</th>
<th>SMR 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–19</td>
<td>317,133</td>
<td>8/13.10</td>
<td>0.61/0.26–1.20</td>
<td></td>
<td>169,434</td>
<td>6/6.64</td>
<td>0.90/0.33–1.96</td>
<td></td>
</tr>
<tr>
<td>0–4</td>
<td>28,800</td>
<td>1/1.39</td>
<td>0.72/0.02–4.00</td>
<td></td>
<td>984</td>
<td>0/0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–9</td>
<td>134,311</td>
<td>1/6.17</td>
<td>0.16/0.00–0.89</td>
<td></td>
<td>62,726</td>
<td>0/2.87</td>
<td>0/0.00–1.05</td>
<td></td>
</tr>
<tr>
<td>10–14</td>
<td>112,250</td>
<td>6/3.49</td>
<td>1.72/0.63–3.75</td>
<td></td>
<td>71,381</td>
<td>6/2.22</td>
<td>2.70/0.99–5.89</td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>41,772</td>
<td>0/2.05</td>
<td>0/0.00–1.46</td>
<td></td>
<td>34,343</td>
<td>0/1.50</td>
<td>0/0.00–2.00</td>
<td></td>
</tr>
</tbody>
</table>

Leukemia-lymphoma

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Person years of experience</th>
<th>Observed/expected</th>
<th>SMR</th>
<th>SMR 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–19</td>
<td>5/10.79</td>
<td>0.46/0.15–1.07</td>
<td>4/5.80</td>
<td>0.69/0.19–1.77</td>
</tr>
<tr>
<td>0–4</td>
<td>1/1.04</td>
<td>0.96/0.02–5.35</td>
<td>0/0.03</td>
<td>0/0.00</td>
</tr>
<tr>
<td>5–9</td>
<td>3/4.45</td>
<td>0.67/0.14–1.96</td>
<td>3/2.08</td>
<td>1.44/0.30–4.20</td>
</tr>
<tr>
<td>10–14</td>
<td>1/3.58</td>
<td>0.28/0.01–1.56</td>
<td>1/1.27</td>
<td>0.44/0.01–2.45</td>
</tr>
<tr>
<td>15–19</td>
<td>0/1.72</td>
<td>0/0.00–1.74</td>
<td>0/1.42</td>
<td>0.00–2.11</td>
</tr>
</tbody>
</table>

Other cancer

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Person years of experience</th>
<th>Observed/expected</th>
<th>SMR</th>
<th>SMR 95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–19</td>
<td>5/10.79</td>
<td>0.46/0.15–1.07</td>
<td>4/5.80</td>
<td>0.69/0.19–1.77</td>
</tr>
<tr>
<td>0–4</td>
<td>1/1.04</td>
<td>0.96/0.02–5.35</td>
<td>0/0.03</td>
<td>0/0.00</td>
</tr>
<tr>
<td>5–9</td>
<td>3/4.45</td>
<td>0.67/0.14–1.96</td>
<td>3/2.08</td>
<td>1.44/0.30–4.20</td>
</tr>
<tr>
<td>10–14</td>
<td>1/3.58</td>
<td>0.28/0.01–1.56</td>
<td>1/1.27</td>
<td>0.44/0.01–2.45</td>
</tr>
<tr>
<td>15–19</td>
<td>0/1.72</td>
<td>0/0.00–1.74</td>
<td>0/1.42</td>
<td>0.00–2.11</td>
</tr>
</tbody>
</table>

\(a \) Expected, if average, annual age-sex-cause specific mortality rates in Los Angeles County from 1961 to 1968 prevailed.

\(b \) Observed deaths/expected.

\(c \) Based on 95% confidence limits (CL) for the ratio of a Poisson variable to its expectation. Limits on the SMR are not shown where the expectation is less than 0.5.

\(d \) International Classification of Diseases, 7th revision (ICD-7th), Codes 200 to 205.

or similar and the year of birth agreed ±1 year, but the address was different, a letter or phone call to the parents of either the cancer victim or the animal bite victim was used to solicit the information needed to determine a true or false match.

A total of 3816 in-state cancer deaths and 238 out-of-state cancer deaths were checked against the dog bite index; 68 deaths were considered to be at least possible matches and definitive information as to whether or not the death matched a child in the study population was secured for all but 12 (3 of 5 leukemia-lymphoma deaths and 3 of 7 other cancer deaths for which matches were not confirmed were for children who died outside of Los Angeles County). Expected deaths by 5-year age groups and sex for leukemia-lymphoma and other cancer were computed with the use of the average, annual age-sex-cause specific mortality rates for Los Angeles County from 1961 to 1968. These rates were applied to the comparable number of exposure-years accumulated by dog bite victims in the study as observed through 1968. SMR's were computed (observed no. of deaths/expected no.) and 95% confidence factors (2-tailed) for the ratio of a Poisson variable to its expectation (4) were used to compute confidence limits for the observed ratios.

The analysis was repeated with all but the 1st year of data, all but the 1st 2 years of data, etc., up to all but the 1st 5 years of data. This allowed for the possibility of a latent period between the dog bite and the onset of cancer and also for an interval between onset and death.

\(^2 \) The abbreviation used is: SMR, standardized mortality ratio.
Prospective Study of Dog Bite and Childhood Cancer

The finding in this study that children bitten in the age group 5 to 9 show a discrete latent period followed by a maximum occurrence of leukemia-lymphoma at ages 10 to 14 with subsequent decline is consistent with the hypothesis that a dog bite was the common initiating event. However, this finding has only borderline statistical significance, and it is weakened by the lack of consistency in other age groups.

Observed deaths are less than expected in age groups 5 to 9 and 15 to 19, with an interval of 4 or more years following the bite. The person years of experience at ages 5 to 9 with a 4+-year interval are contributed mainly by children bitten at ages 0 to 4 (93%), the youngest age group in the study population; similarly, most of the person years at ages 15 to 19 with a 4+-year interval are contributed by children bitten at ages 10 to 14 (84%), the oldest group. It is conceivable that the older children may have a better cancer defense mechanism, or they may simply have become more dispersed and for that reason harder to match with death data. Also, in this study, there is a low probability of detecting a statistically significant difference even if a 3-fold increase exists in the risk of leukemia-lymphoma with a 4+-year interval between bite and death.

The observations are provocative and should encourage further epidemiological study of the relationship between dog bite and childhood leukemia-lymphoma. The need is evident for a large study population and a 10-year follow-up, which would allow for an analysis that provides for a latency period.

The overall results of this study should be interpreted as indicating that children bitten by dogs do not incur an importantly increased risk of developing cancer.

REFERENCES

9. Laird, H. M., Jarrett, O., Crighton, G. W., Jarrett, W. F. H., and Hay, D. Replication of Leukemogenic-type Virus in Cats with 3 or more and 4 or more years of delay between the bite and death are almost significant at the 5% level (p = 0.06).

Prospective Study of Dog Bite and Childhood Cancer

Frank D. Norris, Edwin W. Jackson and Edward Aaron

Cancer Res 1971;31:383-386.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/31/4/383

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerres.aacrjournals.org/content/31/4/383. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.