Lethal Effect of Adriamycin on the Division Cycle of HeLa Cells

S. H. Kim and J. H. Kim

Division of Biophysics, Sloan-Kettering Institute [S. H. K.] and Department of Radiation Therapy, Memorial Hospital for Cancer and Allied Diseases [J. H. K.] New York, New York 10021

SUMMARY

Adriamycin, a new antitumor antibiotic in the anthracycline group, promptly inhibits DNA and RNA synthesis and arrests cell division. The cell viability (defined as the capacity of a single cell to grow out into a macroscopic clone) is reduced sharply following exposure to adriamycin, 0.1 μg/ml, for a fractional period of the generation time. With the use of a synchronous population of HeLa cells, it is shown that the maximum loss in cell viability takes place when exposure to adriamycin occurs during the DNA-synthetic phase (S). The relative dose-response curves of HeLa cells exposed to either adriamycin or daunomycin show that daunomycin is significantly more effective in reducing the cell viability than is adriamycin on a molar basis.

INTRODUCTION

Adriamycin is an antibiotic of the anthracycline group isolated from Streptomyces var. caesius (1). The antibiotic has a chemical structure similar to that of daunomycin, differing from daunomycin only in the replacement of a hydrogen atom in the acetyl radical of the aglycone moiety by a hydroxyl group (9). Adriamycin has recently been reported to be an effective growth inhibitor of several human tumors as well as of leukemic cells. Preliminary clinical studies seem to indicate that the adriamycin might have a higher therapeutic index (the ratio of the normal tissue tolerance dose to the tumor lethal dose) than does daunomycin (2, 7). The effect of daunomycin on the nucleic acid metabolism and viability of HeLa cells has recently been reported to be an effective growth inhibitor of several human tumors (4). The studies reported in this paper, in which a mitotically synchronized culture was used, provide some information on cell viability and nucleic acid synthesis in HeLa cells following treatment with adriamycin and make possible a comparison of the biological activities of adriamycin and daunomycin.

MATERIALS AND METHODS

Experiments were carried out with HeLa S-3 cells in Eagle's minimum essential medium supplemented with 15% fetal calf serum. Details of the cell culture procedure were described elsewhere (3). Tests for contamination of the HeLa cultures with mycoplasma were negative.

Synchronous cultures were obtained by selective collection and plating of mitotic cells (5). Labeling procedure, autoradiography, and determination of nucleic acids and protein have been described in detail elsewhere (6).

Cell counts were performed with a Model B Coulter counter. Plating for colony counts was carried out with 60-mm plastic Petri dishes. Control and adriamycin-treated plates prepared from trypsinized single cell suspensions or harvested mitotic cells (500 cells/plate) were incubated for 12 days at 37°. Colonies were fixed with methanol, stained with crystal violet, and counted after projection with a photographic enlarger. A colony containing more than 50 cells was considered to be reproductively intact.
Chart 1. Effects of adriamycin on the incorporation of tritium-labeled thymidine, uridine, and valine into DNA, RNA, and protein, respectively. Twenty-two hr after the plating of 5×10^5 trypsinized cells, adriamycin was added and, at indicated times following the drug addition, 15-min pulses of thymidine-3H (1.9 Ci/mmole, 1 μCi/ml), 10-min pulses of uridine-3H (20 Ci/mmole, 1 μCi/ml) or 30-min pulses of valine-3H (0.6 Ci/mmole, 3 μCi/ml) were given to cells, which were then processed, and radioactivity was measured in a liquid scintillation counter. ○, control (no drugs); ●, adriamycin, 0.01 μg/ml; △, adriamycin, 0.1 μg/ml; ▲, adriamycin, 1.0 μg/ml.

Chart 2. Changes in the number of cells per plate following exposure of HeLa cells to adriamycin. ○, control (no drug); ●, adriamycin 0.01 μg/ml; △, adriamycin, 0.1 μg/ml; ▲, adriamycin, 1.0 μg/ml.

During the division cycle revealed that the drug was most toxic during S phase (Chart 4). A relatively high degree of synchrony and a normal rate of cell progression through the cell cycle were obtained, as demonstrated by the graph of the percentage of cells labeled with tritiated thymidine (Chart 4).

Comparative Study of Adriamycin and Daunomycin on Cell Viability. Chart 5 shows the relative dose response curves of asynchronously growing HeLa cells exposed for 1 hr to adriamycin or daunomycin. It is evident that daunomycin is significantly more effective in reducing the cell viability than adriamycin on a molar basis.

DISCUSSION

It is evident from the present experiments that adriamycin promptly inhibits the synthesis of DNA and RNA in HeLa cells (Chart 1). The rate of protein synthesis is not

Chart 3. Survival of asynchronously growing HeLa cells exposed to varying concentrations of adriamycin as a function of time of exposure. The drug was added to cells 20 hr after plating. Each point represents an average of 6 replicate plates. The plating efficiency of the control cells was 60%.

Chart 4. Survival of synchronously growing HeLa cells exposed to either adriamycin (0.3 μg/ml) or daunomycin (0.5 μg/ml) for 1 hr during the different phases of the division cycle. ○ - ○, percentage of cells labeled with tritiated thymidine (10-min pulse) during the division cycle in the controls. AM, adriamycin; DM, daunomycin. The plating efficiency of the control cells was 55%. The data represent the average of 2 separate experiments.
Lethal Effect of Adriamycin on HeLa Cells

Chart 5. Comparative survival in random HeLa cells exposed to various concentrations of either daunomycin or adriamycin for 1 hr. Drug was added to cells 20 hr after plating. The plating efficiency of the control cells varied from 60 to 65%. Each point represents an average of 3 separate experiments. AM, adriamycin; DM, daunomycin.

...significantly reduced, at least for the 1st 12 hr after exposure of cells to the drug. These results demonstrate that replacement of a hydrogen atom at the acetyl radical of the aglycone by a hydroxyl group does not appreciably alter the pattern of the inhibition of nucleic acid and protein synthesis. Although no in vitro studies on the interaction of the drug with DNA were carried out, as was the case with daunomycin (4), it may be conjectured that the basic inhibitory mechanisms of action of adriamycin and daunomycin are similar, on the basis of the rather close structural similarity between the 2 antibiotics.

The cell viability, defined here as the capacity of a single cell to grow out into a macroscopic clone, is reduced sharply following exposure of the asynchronous cell population to adriamycin (0.1 μg/ml) for a fractional period of the generation time (Chart 3). However, a comparison of the relative lethality of adriamycin with daunomycin shows that adriamycin is less toxic than daunomycin (Chart 5). The less toxic effect of adriamycin was also observed in in vivo animal systems (9). The lethal action of adriamycin during the division cycle shows that the drug is most effective in reducing the reproductive capacity of cells engaged in DNA synthesis (Chart 4). Again, the result with adriamycin is similar to that with daunomycin in our previous studies (4). The apparent mechanism for the differential lethal activity occurring during the division cycle is not known. Whether the accessibility to the drug of DNA in chromosomes may vary or whether the efficiency of the repair may change during the cycle cannot be determined without further experimentation.

Adriamycin has been shown, in several experimental animal tumor systems, to have a higher therapeutic index than daunomycin (2, 7). Adriamycin is, in fact, less effective in killing HeLa cells than daunomycin on a molar basis. A recent in vivo comparative study of daunomycin and adriamycin shows that adriamycin is less cytotoxic than daunomycin to normal hematopoietic colony-forming cells in mice, although the lethal effect on the leukemic cells was more pronounced with adriamycin than with daunomycin (8).

ACKNOWLEDGMENTS

We extend our gratitude to Dr. J. S. Laughlin and Dr. G. J. D’Angio for encouragement and support throughout this study. We also thank Dr. J. Fried for assistance in the preparation of the manuscript.

REFERENCES

Lethal Effect of Adriamycin on the Division Cycle of HeLa Cells

S. H. Kim and J. H. Kim

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/32/2/323

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.