Morphogenesis of Two Immunologically Induced Mouse Lymphomas

Gerhard R. Krueger and Ursula I. Heine

Hematopathology Section and Laboratory of Pathology [G. R. K.], and Virus Studies Section, Office of Associate Scientific Director for Viral Oncology [U. I. H.], National Cancer Institute, NIH, Bethesda, Maryland 20014

SUMMARY

Female BALB/c and DBA/2N mice were treated simultaneously with azathioprine and an antigen (LDH virus, tubercle bacteria, or bovine serum albumin). Experimental animals developed between 20 and 66% malignant lymphomas that were classified by light and electron microscopy as lymphoblastic types. The tumors developed in an atrophic thymus and subsequently spread to involve the remaining lymphoreticular and hemoreticular tissues, as well as nearly all other organs. Cytologically, the initial thymic tumor nodules did not differ from hyperplastic nodules of nonneoplastic lymphoblastic stem cells. Also, cells of a well-established tumor showed only slight differences from those of normal lymphoblastic stem cells, such as increased esterase activity and presence of cytoplasmic annulate lamellae. Virus particles (C-type) were identified by electron microscopy only in early tissue culture passages of the BALB/c lymphoma but not in the DBA lymphoma. All tumors were readily isotransplantable. Cell-free transplantation remained negative in all instances tried. The tumor grows in tissue culture as an established lymphoblast cell line.

INTRODUCTION

The induction of malignant lymphomas by interference with the immune response against a variety of antigens was recently demonstrated (5, 11). It appears that this lymphoma development is less dependent upon the oncogenic transformation of cells by viruses but is rather a consequence of simultaneous persistent antigenic stimulation and immunosuppression (7, 8). These conditions, leading to the appearance of malignant lymphomas in this experiment, are quite similar to conditions under which certain human lymphomas develop, for instance those after kidney allotransplantation and those in immune deficiency syndromes (6, 7, 18, 19, 23). Since the morphology of human lymphomas is well described but the initiating lesions are still poorly known, a systematic morphological investigation was carried out on the development of immunologically induced malignant lymphomas in mice as a background for the initiation of a careful search for comparative lesions in human pathology.

Received October 4, 1971; accepted December 3, 1971.

MATERIALS AND METHODS

Tumor Induction. By a method described previously (7, 11), 386 female, 6-week-old BALB/cAnN and DBA/2N mice were immunosuppressed with azathioprine and antigenically stimulated with LDV¹, tubercle bacteria, or BSA. The mice from the Animal Production Branch of the NIH were caged in groups of 6 and fed Purina laboratory chow and tap water ad libitum. LDV (Imuran; Burroughs Wellcome and Co., Tuckahoe, N. Y.) was administered in drinking water at an average dose of 15 mg/kg/day. LDV, originally obtained from Dr. Abner L. Notkins at the National Institute of Dental Research, was harvested from the serum of CAF mice. Six weeks after BALB/c mice were infected with this virus, serum was drawn from them. This serum served for infecting the experimental mice at a median infectious dose of $10^9.5$. The infectious dose was calculated by the method of Reed and Muench (21). Infection of mice was achieved by a single i.p. injection of 0.1 ml of virus-containing mouse serum. Tubercle bacteria organisms (H37Ra; Difco Laboratories, Inc., Detroit, Mich.) were suspended in 1 ml of adjuvant, and 0.05 ml of this suspension was injected s.c. into the thigh at biweekly intervals. Both hind legs were used alternately. BSA (BSA Fraction V powder; Pentex, Inc., Kankakee, Ill.) was made up to a 10% solution in phosphate-buffered saline, pH 7.4, and 0.25 ml of this solution was injected i.p. every day during the entire experiment.

Light and Electron Microscopy. Complete autopsies, excluding the brain, were done on randomly chosen experimental mice at monthly intervals starting 1 month after initiation of the experiment and at biweekly intervals after the 3rd month. Samples taken from all organs were fixed in Zenker's solution and embedded in paraffin, and 5-μm sections were stained with hematoxylin and eosin, Giemsa, PAS, methyl green-pyronin Y, and Wilder's reticulum stain. Blood smears and imprints from lymph nodes and spleen were treated with May-Grünwald-Giemsa stain.

In addition, selected tissue specimens were fixed in 3% buffered glutaraldehyde solution in Sorensen's buffer, postfixed with osmium tetroxide, and embedded in Epon. Ultrathin sections were cut on an LKB Ultratome, stained with uranyl acetate and lead citrate, and examined in a Siemens-Elmiskop IA electron microscope with a double condenser and a 50-μm objective aperture. An accelerating voltage of 80 kV was used.

¹The abbreviations used are: LDV, lactic dehydrogenase-elevating virus; BSA, bovine serum albumin; PAS, periodic acid-Schiff.

MARCH 1972

573
Histochemistry. The following 6 reactions were used for cytochemical characterization of lymphoma cells on selected imprints from tumor nodules: PAS (14), Sudan black B (17), nonspecific esterase (12), peroxidase (4), acid phosphatase (3), and alkaline phosphatase (2). Imprints from normal lymph nodes of BALB/c and DBA mice served as controls.

Transplantation Studies. Small pieces of tissue, approximately 1 cu mm, taken from different sites (thymus, lymph nodes, and spleen) were transplanted s.c. into the lateral abdominal wall of isogenic female mice not more than 6 months old. They were obtained under aseptic conditions and transferred by use of a No. 14 trochar attached to a syringe.

For cell-free transplantation, tumorous material from both BALB/c and DBA mice was homogenized under cooling in an ice bath (3000 rpm for 5 min in a Potter-Elvehjem glass homogenizer). After centrifugation of the debris (at 15,000 rpm for 10 min), the supernatant was pressed through a Millipore filter (pore size, 0.45 um) and 0.1 ml of the resulting fluid was injected i.p. into 35 newborn and 35 isogenic 8-week-old mice of both strains.

Cell Culture Studies. Tumor tissue removed under aseptic conditions was minced by scissors in sterile phosphate-buffered saline (pH 7.4). After the addition of 0.25% trypsin with collagenase (2 ml/0.1 g of tissue) trypsinization was done, with stirring, for 1 hr. After being washed 3 times in phosphate-buffered saline, the cells were placed in tissue culture flasks containing Medium 1640 with glutamine and neomycin.

RESULTS

The incidence of malignant lymphomas was between 20 and 66%. Details are summarized in Table 1. The lymphomas were identified as 207K (BALB/c tumor) and F (DBA tumor).

Light Microscopy

The morphologies as well as the morphological developments of the 207K and F lymphomas were identical.

<table>
<thead>
<tr>
<th>Mouse strain</th>
<th>No. of mice</th>
<th>Treatment</th>
<th>Immuno-suppression</th>
<th>Incidence of malignant lymphoma (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BALB/c</td>
<td>32</td>
<td>LDV</td>
<td>Azathioprine</td>
<td>32</td>
</tr>
<tr>
<td>BALB/c</td>
<td>32</td>
<td>TBa</td>
<td>Azathioprine</td>
<td>20</td>
</tr>
<tr>
<td>BALB/c</td>
<td>64</td>
<td>BSA</td>
<td>Azathioprine</td>
<td>20</td>
</tr>
<tr>
<td>BALB/c</td>
<td>32</td>
<td>LDV</td>
<td>Azathioprine</td>
<td>0</td>
</tr>
<tr>
<td>BALB/c</td>
<td>32</td>
<td>TB</td>
<td>Azathioprine</td>
<td>0</td>
</tr>
<tr>
<td>BALB/c</td>
<td>46</td>
<td>BSA</td>
<td>Azathioprine</td>
<td>0</td>
</tr>
<tr>
<td>BALB/c</td>
<td>46</td>
<td>Azathioprine</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>DBA</td>
<td>34</td>
<td>BSA</td>
<td>Azathioprine</td>
<td>66</td>
</tr>
<tr>
<td>DBA</td>
<td>34</td>
<td>BSA</td>
<td>Azathioprine</td>
<td>0</td>
</tr>
<tr>
<td>DBA</td>
<td>34</td>
<td>Azathioprine</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

a TB, complete Freund's adjuvant.
hemopoietic stem cells. These cells, however, progressively replaced the red pulp and, finally, nearly all of the follicles. However, even in late cases, follicular remnants often were still noted. In other spleens, the peripheral zone of the follicle or the entire follicle consisted of basophilic reticulum cells which spread subsequently to replace also most parts of the red pulp. Peyer's patches contained a solid population of basophilic reticulum cells.

Among other organs involved by infiltrates of these basophilic reticulum cells were liver, lungs, kidney, bone marrow, ovaries, heart, peripheral nerves, and the retroperitoneal space. In the liver, these cells populated the periporal triads and the sinusoids (Fig. 10). In the lungs, the peribronchial and perivascular spaces contained nodules of basophilic reticulum cells that further invaded the interalveolar spaces (Fig. 11). Similarly, focal tumor spread occurred in the kidney from the perivascular spaces. The ovary often was nearly completely replaced by lymphoma cells, leaving only a few ova for organ identification. The aorta in several cases was sheathed by a large tumor mass. The bone marrow was completely replaced by tumor cells that in some instances also invaded the surrounding connective and muscle tissue (Fig. 12). There was no increase in reticulin fibers in areas of lymphoma growth. Blood smears during this period of tumor generalization showed a nearly monomorphous population of lymphoblasts.

The mice died quite emaciated, probably of respiratory failure secondary to large tumor masses in the mediastinum and in the lungs.

Electron Microscopy

In ultrathin sections of the tumor (Fig. 13), the majority of the cells resembled immature cells, especially those of the well-known lymphoblastic type. They contained large nuclei in which the chromatin was distributed quite evenly. The nucleoli were always very large. The amount of cytoplasm surrounding the nuclei was small and rich in ribosomes and contained few cytoplasmic organelles. Surprising was the high number of annulate lamellae in the cytoplasm of the blast cells (Fig. 14). A stroma consisting of fibroblasts was poorly developed. It separated layers of blast cells from each other.

Histochemistry

The cytochemical characterization of normal and tumor cells from the lymphoreticular tissues is given in Table 2. Positive reactions, when observed, were always cytoplasmic and finely granular. Normal lymphoreticular cells showing esterase activity usually met the morphological criteria of histiocytes, while in the tumor, also, lymphoblastic stem cells were esterase positive. The stainability of cells with Sudan black was faint, while quite a number of tumor cells (lymphoblasts) showed PAS-positive cytoplasmic granules, usually located in one circumscribed region close to the nucleus.

Transplantation

Transplantation of particulate tumor material into isogeneric mice resulted in 100% takes in both BALB/c and DBA mice. Among other organs involved by infiltrates of these basophilic reticulum cells were liver, lungs, kidney, bone marrow, ovaries, heart, peripheral nerves, and the retroperitoneal space. In the liver, these cells populated the periporal triads and the sinusoids (Fig. 10). In the lungs, the peribronchial and perivascular spaces contained nodules of basophilic reticulum cells that further invaded the interalveolar spaces (Fig. 11). Similarly, focal tumor spread occurred in the kidney from the perivascular spaces. The ovary often was nearly completely replaced by lymphoma cells, leaving only a few ova for organ identification. The aorta in several cases was sheathed by a large tumor mass. The bone marrow was completely replaced by tumor cells that in some instances also invaded the surrounding connective and muscle tissue (Fig. 12). There was no increase in reticulin fibers in areas of lymphoma growth. Blood smears during this period of tumor generalization showed a nearly monomorphous population of lymphoblasts.

The mice died quite emaciated, probably of respiratory failure secondary to large tumor masses in the mediastinum and in the lungs.

Electron Microscopy

In ultrathin sections of the tumor (Fig. 13), the majority of the cells resembled immature cells, especially those of the well-known lymphoblastic type. They contained large nuclei in which the chromatin was distributed quite evenly. The nucleoli were always very large. The amount of cytoplasm surrounding the nuclei was small and rich in ribosomes and contained few cytoplasmic organelles. Surprising was the high number of annulate lamellae in the cytoplasm of the blast cells (Fig. 14). A stroma consisting of fibroblasts was poorly developed. It separated layers of blast cells from each other.

Histochemistry

The cytochemical characterization of normal and tumor cells from the lymphoreticular tissues is given in Table 2. Positive reactions, when observed, were always cytoplasmic and finely granular. Normal lymphoreticular cells showing esterase activity usually met the morphological criteria of histiocytes, while in the tumor, also, lymphoblastic stem cells were esterase positive. The stainability of cells with Sudan black was faint, while quite a number of tumor cells (lymphoblasts) showed PAS-positive cytoplasmic granules, usually located in one circumscribed region close to the nucleus.

Transplantation

Transplantation of particulate tumor material into isogeneric mice resulted in 100% takes in both BALB/c and DBA mice.
The invasive and destructive growth pattern and the contaminant in DBA mice, or intracysternal A-particles, lymphoma 207K. Other virus particles, i.e., B-particles and the cultured cells. The only virus particles seen were those of proliferating cells in this experiment, it must be assumed that involvement of oncogenic viruses in this experiment, as judged cancer occurred. Despite the fact that there appears to be no transformed, i.e., a neoplastic cell. No method used in this transplantation and cell-culture characteristics suggest a malignant neoplastic spread by invasion, destruction, and metastasis. Cytological and cytohistochemical details at this time still reveal cells in the lymphoma resembling normal lymphoblastic stem cells (13, 22). The lymphoma cells differ from these only quantitatively in showing increased esterase activity and PAS-positive cytoplasmic granules. The meaning of annulate lamellae in the cytoplasm of the mouse lymphoma cells as also seen in other lymphomas, including Burkitt's tumor (see Ref. 20, Fig. 4), is not clear.

In spite of an intensive search, virus particles characteristic of the LDV were found in neither the original tumor tissue nor the cultured cells. The only virus particles seen were those of the C type. They were found in the 1st passage of the LDV were found in neither the original tumor tissue nor tumor (see Ref. 20, Fig. 4), is not clear. From the above descriptions it becomes clear that the morphological evolution of a lymphoreticular cancer from an inconspicuous hyperplastic node to a clear-cut invasive and destructive neoplasia may occur gradually. This accounts for the considerable difficulty in some hyperplastic human lymph nodes to establish or reject the diagnosis of a neoplastic disease. This was demonstrated in another study about lymphoreticular abnormalities in Chediak-Higashi disease (10), and it is certainly known also to every surgical pathologist confronted with a lesion suggestive of early Hodgkin's disease. Foci of immature stem cells in atrophic lymphoreticular tissues, however, should catch the attention of the morphologist and lead to a careful follow-up of the patient.

This study, combined with the immunological investigations cited (8), also shows that a malignant lymphoma may develop as a single focus in 1 organ and subsequently spread like metastases, as do other tumors. It therefore may be curable by removal of the primary focus before metastatic generalization has occurred. However, if the lymphoreticular atrophy or dysfunction underlying the development of the neoplastic disease is not reversible, the repeated occurrence of malignant lymphomas appears unavoidable.

ACKNOWLEDGMENTS

We thank Miss Duran Harris and Mr. B. Elliott, Jr., for technical assistance and Mr. Ralph L. Isenburg and Mr. Douglas Jones for photography. We are grateful to Dr. A. J. Dalton for stimulating discussions.

REFERENCES

Morphogenesis of Immunologically Induced Lymphomas

Fig. 1. Thymus of a female DBA mouse at 3 months of treatment with azathioprine and BSA. Note the marked loss of small lymphocytes, causing severe cortical narrowing. H & E, X 25.

Fig. 2. Thymus of a female DBA mouse at 3.5 months of treatment with azathioprine and BSA. Note focal proliferation of stem cells in atrophic cortex. H & E, X 150.

Fig. 3. Higher magnification of thymic cortical stem cell nodules. H & E, X 375.

Fig. 4. Lymph node of a female DBA mouse at 4 months of treatment with azathioprine and BSA. Note marked homologous atrophy. H & E, X 50.

Fig. 5. Malignant lymphoma replacing thymus and invading perithymic neck tissue in a female DBA mouse at 5 months of treatment with azathioprine and BSA. H & E, X 10.

Fig. 6. Starry-sky pattern of thymic lymphoma shown in Fig. 5. H & E, X 375.

Fig. 7. Lymph node of a female DBA mouse at 4 1/2 months of treatment with azathioprine and BSA. Note loose aggregates of stem cells in peripheral sinus. H & E, X 375.

Fig. 8. Postcapillary vein of inguinal lymph node in female DBA mouse at 4.5 months of treatment with azathioprine and BSA. Note “homing” of lymphoblastic stem cells along vascular endothelium. H & E, X 675.

Fig. 9. Spleen of a female DBA mouse at 5 months of treatment with azathioprine and BSA. Note subcapsular stem cell proliferation. H & E, X 150.

Fig. 10. Liver of a female DBA mouse at 6 months of treatment with azathioprine and BSA. Note dense population of lymphoma cells in sinusoids and periportal spaces. H & E, X 150.

Fig. 11. Lung of a female DBA mouse at 7 months of treatment with azathioprine and BSA. Note dense lymphoma cuffs surrounding vessels. H & E, X 150.

Fig. 12. Spine of a female DBA mouse at 8 months of treatment with azathioprine and BSA. Note complete replacement of hemopoietic bone marrow by lymphoma cells, and extensive invasion by lymphoma of adjacent soft tissues. H & E, X 150.

Fig. 13. Lymphoma F occurring in a DBA mouse consisting of blast-like cells. Large nuclei contain chromatin in its diffuse state. Nucleoli are well developed. Cytoplasm is rich in ribosomes, but cytoplasmic organelles are few. X 6200.

Fig. 14. Annulate lamellae (center of illustration) were observed frequently in the cytoplasm of the tumor cells. N, nucleus. X 60,000.

Fig. 15. Cells of lymphoma 207K (BALB/c mouse) grown in culture, 10th passage. The cells have the characteristics of lymphoid cells and exhibit well-developed Golgi zones (GZ) often surrounded by mitochondria. X 14,750.

Fig. 16. In the primary culture of lymphoma 207K virus particles of the C type were regularly seen. Two immature particles are illustrated that show clearly the electron-dense inner shell and the opaque intermediate shell. Note the relatively wide border of spikes around the particles. Note also the spikes around the obliquely cut virus particles (arrow). X 150,000.
Morphogenesis of Two Immunologically Induced Mouse Lymphomas

Gerhard R. Krueger and Ursula I. Heine

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/32/3/573

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.