Regression of Transplantable Immunoglobulin-secreting Rat Tumors by Irradiation and Chemotherapy and Induction of Transplantation Resistance

C. Deckers, L. Deckers-Passau, and F. de Halleux

Laboratoire de Cancérologie Expérimentale, Institut du Cancer, Université Catholique de Louvain, Kapucienenvoer, 35, B-3000, Louvain, Belgium

SUMMARY

Immunoglobulin-secreting immunocytomas arose spontaneously in the LOU/c inbred strain of rats. The immunoglobulin G-producing immunocytoma ISIS130 was sensitive to Cytoxan; 80% of rats with advanced tumors could be permanently cured. Sixty-seven % of cured rats developed specific transplantation resistance to ISIS130.

INTRODUCTION

Only a minority of well-established transplantable tumors regress under the influence of a single radiation or chemotherapy treatment, or of a combination of both (1, 13, 15-18). There is evidence that host factors may be involved in these situations (7).

A spontaneous tumor that arose in our rat strain LOU/c was serially transplanted. The transplantable tumors derived therefrom were sensitive to local irradiation and to chemotherapy. Well-established tumors also responded to these treatments, and macroscopic regression of transplanted tumors was observed. Thereafter the animals were resistant to a 2nd graft of the same tumor. The transplantation resistance remained for very long time periods.

MATERIALS AND METHODS

Rat Strain and Tumors. The adult rats used were from a strain that was random bred at the Cancer Institute from 1945 until 1956 and that was inbred thereafter. All tumors used in this work arose in the inbred strain.

The incidence of the immunoglobulin-secreting immunocytoma was 2.8% (9, 10). This type of tumor was first observed in our rat strain in 1955 and was described previously as a leukosarcoma (11). The animals developed these spontaneous tumors of the ileocecal lymph node between 7 and 20 months of age (age of animals at appearance of tumors). At present, the incidence of immunoglobulin-secreting immunocytomas has increased to 10% (2). The primary tumor grows rapidly in the peritoneal cavity, invades the mesenterial lymph nodes and the peritoneum, and provokes ascitic fluid containing isolated cancer cells. Metastatic involvement of mediastinal, axillary, and cervical lymph nodes and pleural effusion, as well as anemia and peripheral blood disorders, are seen in the terminal stage of the disease (2, 11).

Microscopically, the immunoglobulin-secreting immunocytoma structure is that of an undifferentiated reticulosarcoma (2, 11). (Dr. Dunn and Dr. Snell examined our tumor and described it as an undifferentiated lymphoreticular cell tumor.) The primary tumors secrete complete or incomplete immunoglobulins which can be detected in the serum, in the ascitic fluid, and in the pleural effusion by electrophoresis or immuno-electrophoresis (2–4).

Different strains of transplantable tumors were established from these immunoglobulin-secreting immunocytomas. From the 1st passage on, the paraprotein secretion that was observed in the host serum remained in some cases after more than 100 passages. In exceptional cases paraproteinemia diminished to very low levels during subsequent grafts (2).

In this work, we used the IgG-secreting immunocytoma ISIS130 which originated from the inbred strain and which is easily transplanted (2).

The primary tumor was an ileocecal lymph node isolated from a male rat in 1965. The tumor is transplanted by s.c. administration of 10^6 viable cells or of small tumor fragments. These tumor fragments are given by s.c. injection in the flank (0.25 ml of a suspension of 1 g minced tumor tissue per 1 ml 0.9% NaCl solution).

Received January 15, 1973; accepted June 11, 1973.
Chemotherapy. In these experiments, Cy was administered s.c. in a single dose on the 7th day after tumor transplantation.

Natulan [also designated as a methylhydrazine derivative, or Procarbazine, or RO 4-6467/1 (Roche Laboratories, Brussels, Belgium)] was administered i.p., also in a single dose. The drug, obtained as a dry powder, was solubilized in 0.9% NaCl solution immediately before use and was injected i.p., as a 5% solution. Dosages of the drugs are indicated on Charts 2 and 3.

Recording of the Growth of the Tumor after Treatment. The growth of the tumor was followed by measurement daily of the 2 largest dimensions of the tumor. These figures are given on the charts. Surface values correlate the weights of the tumors. For other measurements, the tumor-bearing animals were killed on the 7th or 8th day after treatment and records were made of the weight of the excised tumor in comparison with untreated controls. These values are included in the charts.

The paraprotein level was determined in some experiments and also correlated well with tumor volume (C. Deckers, in preparation).

RESULTS

Inhibition of IgG-secreting Immunocytomas by Radiotherapy and Chemotherapy Treatment

Growth Curve of ISIS

In the 1st experiment, the growth rate of ISIS was determined in untreated hosts. Tumor grafts, established as described, could already be detected after 4 to 5 days of growth and were followed by daily measurement as recorded in Chart 1.

The growth of this tumor was rapid and, after 2 to 3 weeks, most of the animals died. With 10⁷ cells, tumor development was more rapid whereas, with fewer tumor cells, the latent period was slightly increased.

Sensitivity of ISIS to Radiotherapy

Growth Curve after a Single Dose of Radiotherapy. As seen on the growth curve obtained by daily measurement of the tumor, a dose of 100 R (Chart 1) administered on the 8th day of tumor growth did not essentially modify the growth curve; a dose of 500 R produced a "plateau" effect. The tumor diameter remained constant for 2 days and thereafter the growth rate was similar to that of the control tumor. At 1000 R, a significant reduction was obtained for several days; afterward, the tumor regrew and the animals died a few days later than the untreated controls (Chart 1). With larger doses, skin necrosis occurred in the irradiated area.

Comparison of Tumor Weights on Day 7 after Radiotherapy. The graft was excised from animals that were sacrificed on the 7th day after radiotherapy. The tumor weight was recorded and compared with that of untreated controls. Thus, a dose of 1000 R gave a 38.5% reduction in tumor weight.

Sensitivity of ISIS to Cy and Natulan Treatment

The same method was used to test the sensitivity of ISIS to Cy treatment.

The growth curve of the tumor of animals treated with Cy (1 dose of either 0.12 or 1.5 mg/100 g body weight on the 8th day after the tumor graft) is given in Chart 2.

Chart 3 gives similar data for ISIS tumors treated with Natulan, also given as a single dose on the 8th day of tumor growth.

By recording the tumor weights at Day 8 after Cy treatment, the reduction of tumor volume by different levels of the drug could be determined. A dose of 0.12 mg Cy per g body weight reduced the graft weight to 30% of the control. A dose of 1.5 mg Cy per 100 g body weight provoked a nearly complete tumor regression at Day 8. The regression of the tumor was not yet complete by Day 8 but was complete only 10 to 15 days after Cy treatment. Some animals were observed for 12 months without recurrence of the tumor.

In conclusion, a well established graft of our ISIS can be easily destroyed by chemotherapy alone. The tumor is more sensitive to 1 dose of Cy or Natulan than to 1 dose of radiotherapy.

Specific Transplantation Resistance after Tumor Treatment

In the following experiment, 1.5 mg Cy per 100 g rat weight was administered to produce a permanent resorption of the graft in most of the animals (Table 1).

Transplantation resistance after tumor destruction by Cy treatment was investigated. Fifteen days after Cy treatment, i.e., 23 days after tumor grafting, or later, the animals were challenged with a 2nd graft of 10⁷ ISIS viable cells. This number of ISIS cells induced a transient growth in most of the animals of this group. In some animals, nodes of 2 cm in diameter appeared and regressed spontaneously after 10 to 15 days. Untreated control animals that received the same graft had 100% positive grafts and died. The number of animals rejecting the graft is given in Table 1.

To test the specificity of this rejection, a syngeneic tumor was injected at a different site in the ISIS-rejecting animals, together with a challenge ISIS graft. These experiments showed that a transplantable hepatoma which secretes alpha-fetoprotein grows in ISIS-rejecting as well as untreated animals. The growth of the hepatoma was followed by histological analysis and by the appearance of alpha-fetoprotein in the host serum. No IgG paraprotein was found in these animals, indicating the absence of ISIS.

Transplantation resistance to ISIS occurs very soon after Cy treatment and remains for a very long time. In some animals, transplantation resistance was still found 12 months after Cy administration. In the interim, we never observed recurrence of the ISIS graft.

The abbreviation used is: Cy, cyclophosphamide (Cytoxan or Endoxan).
The animals were grafted on Day 0 with 10^6 ISIS$_{130}$ cells.

Table I

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Tumor incidence on day of Cya treatment</th>
<th>Tumor regression after Cy treatment</th>
<th>Transplantation resistance after ISIS$_{130}$ challengea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day after transplantation</td>
<td>No. of tumors/ no. of animals</td>
<td>Day after transplantation</td>
</tr>
<tr>
<td>7057</td>
<td>8</td>
<td>40/40</td>
<td>31</td>
</tr>
<tr>
<td>7045</td>
<td>8</td>
<td>40/40</td>
<td>30</td>
</tr>
<tr>
<td>7134</td>
<td>10</td>
<td>36/36</td>
<td>35</td>
</tr>
<tr>
<td>7036</td>
<td>8</td>
<td>60/60</td>
<td>30</td>
</tr>
<tr>
<td>7032</td>
<td>7</td>
<td>36/36</td>
<td>21</td>
</tr>
<tr>
<td>7130</td>
<td>8</td>
<td>32/32</td>
<td>28</td>
</tr>
<tr>
<td>7210</td>
<td>9</td>
<td>42/42</td>
<td>36</td>
</tr>
<tr>
<td>7039</td>
<td>8</td>
<td>11/11</td>
<td>30</td>
</tr>
<tr>
<td>7241</td>
<td>8</td>
<td>20/20</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>317/317</td>
<td></td>
</tr>
</tbody>
</table>

a Dosage: 1.5 mg/100 g body weight.

b Cells (10^6) were given 20 days before the tumor incidence was recorded.

c Some animals were not challenged; eventually, late recurrences were observed.

d Three animals died of infection.

DISCUSSION

Spontaneous tumors similar in their macroscopic behavior to the ileocecal plasmocytomas observed in C3H mice (5, 6, 8, 13, 14) were observed in our rats. Initially, the incidence was 2.8%, but recently it has been increased to 10% (2, 9, 10, 11).

These tumors are easily transplantable at the present time. The histological type of these tumors was described as leucosarcoma (11) and, more recently, as immunoctoma (2). In this paper the name immunoctoma was used instead of leucosarcoma. The tumor cells are rather immature and in any case are not differentiated toward mature plasmocytes; they were classified by cytological criteria as reticulum cell neoplasms (5, 6). These cells probably can be considered as immature precursors of plasmocytes, as described by Rask-Nielsen et al. (14), in their grade IV group.

These tumors secrete a paraprotein in the serum of the original host, usually of the IgG type, rarely of the IgA type. More details about these immunoglobulins are published or in progress (2–4, 12). The paraprotein secretion...
Transplantation Resistance and Immunocytomas

Chart 3. Effect of various single doses of Natulan (Nat) on the growth of tumor ISIS₁₃₀.

One dose of local irradiation administered alone to the 8th-day tumor, a well-established nodule, temporarily controls growth of ISIS₁₃₀. However, a definitive “cure” of the immunocytoma was obtained by a single dose of 1.5 mg Natulan (Nat), which reduced the tumor volume to 83% of that in untreated controls. Complete regression of a 2nd graft of the same tumor; 3 weeks after the initial tumor graft (or 15 days after Cy treatment), 10⁶ tumor cells in the BALB/c mouse (18), or in immunosuppressed xenogeneic species with Walker 256 tumors (15).

The regression of ISIS₁₃₀ was followed by resistance to a 2nd graft of the same tumor; 3 weeks after the initial tumor graft (or 15 days after Cy treatment), 10⁴ tumor cells induced a transient tumor growth followed by complete regression. The same number of cells killed untreated control animals.

Tumor immunity is usually induced by temporary growth of a tumor in an animal. Therefore, Cy-induced regression is a very easy way to obtain temporary growth without the need for surgery or other procedure to remove the tumor.

Additional evidence of the immunological nature of the transplantation resistance came from the demonstration of cellular immunity against ISIS₁₃₀ in ISIS₁₃₀-rejecting animals (C. Deckers and F. de Halleux, in preparation). This transplantation resistance could be passively transferred from resistant animals to untreated controls. Viable ISIS₁₃₀ cells inhibited the migration of spleen cells or peritoneal exudate cells of a resistant animal, indicating the presence of specific cellular immunity against ISIS₁₃₀ in the resistant animals.

The conclusion is that the transplantation resistance obtained after Cy treatment of the established tumor and regression of the nodule is due to specific cellular immunity against IgG-secreting immunocytomas.

ACKNOWLEDGMENTS

We are grateful to Dr. Dunn and Dr. Snell for the processing and pathological analysis of some of our tumors.

Special thanks are due to Dr. E. Weisburger for reading the manuscript.

We thank Dr. J. Heremans and Dr. H. Bazin for stimulating discussions and for identification of some immunoglobulins.

We acknowledge the technical assistance of the members of our laboratory, especially F. Moens and G. Duquaine.

REFERENCES

Regression of Transplantable Immunoglobulin-secreting Rat Tumors by Irradiation and Chemotherapy and Induction of Transplantation Resistance

C. Deckers, L. Deckers-Passau and F. de Halleux

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/33/10/2338

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.