Herpesvirus and Cervical Cancer Studies in Experimental Animals

John L. Sever

Infectious Diseases Branch, National Institute of Neurological Diseases and Stroke, NIH, Bethesda, Maryland 20014

Summary

Several studies with small laboratory animals in which low rates of malignant changes of the cervix have followed intravaginal inoculation with herpes simplex virus type 2 have been reported. Recently, we found that, following intravaginal inoculation, Cebus monkeys develop cervical infections and lesions similar to those found in humans. A large-scale investigation is now in progress to determine whether the repeated infection of Cebus monkeys with herpes simplex virus type 2 will produce malignant changes of the cervix.

HSV-2 infection is transmitted as a venereal disease in humans. In some populations, the frequency of infection is very low. In a recent study of approximately 500 pregnant women in Los Angeles (who were tested twice during pregnancy), we did not isolate HSV-2 from any of the 1000 vaginal-cervical swabs. Serological tests for the detection of antibody to HSV-2 in the sera of pregnant women throughout the United States are now in progress. To date, approximately 12% of the women we have tested have antibodies to HSV-2. For these studies, we are using the hemagglutination method of Fuccillo et al. (3). However, high rates of infection have been reported among sexually promiscuous women and those with cervical lesions (10).

Because of the possible association between genital herpetic infection and cervical cancer in humans, a number of virological-epidemiological studies have been conducted. While some of these investigations have shown higher rates of antibody to HSV-2 among women with cervical dysplasia, in situ carcinoma, and invasive cancer, the results have been variable and can only be taken to suggest a possible association (8, 12). However, the isolation of HSV-2 from cervical cancer tissue supports the association, as does the evidence for transformation of hamster kidney tissue cells in vitro by some strains of HSV-2 (1, 2).

Experimental animals have been used in attempts to produce HSV-2 vaginal-cervical infection and possible cancers. The major studies are summarized in Table 1. Initially, Nahmias et al. (11) reported the inoculation of 1581 newborn hamsters by various routes (intrathoracic, s.c., or i.p.) with 16 strains of HSV-2. Nine of 710 hamsters that survived more than 3 weeks developed mesenchymal sarcomas at the site of inoculation. No HSV-2 antibody could be detected in the sera of the tumor-bearing hamsters, and virus could not be recovered from the neoplasms. Subsequently, Nahmias et al. (10) and Muñoz (7) reported that intravaginal HSV-2 inoculation of mice was occasionally associated with cervical atypia or carcinoma. In recent collaborative investigations, Nahmias et al. (9) and London et al. (6) found that, when inoculated intravaginally, Cebus monkeys develop cervical infection and herpetic lesions similar to that of humans. Reinfection can be produced repeatedly. These observations have provided the basis for a large scale study with Cebus monkeys on the possible association of this infection and cancer of the cervix. The observations have been confirmed by Kalter et al. (4), who used related Cebus monkeys. Other studies by Larson et al. (5) showed the susceptibility of rabbits to intravaginal infection and death.

Our investigations of Cebus monkeys, repeatedly inoculated intravaginally with HSV-2, are summarized in Table 2. This study is supported under contract by the Viral Biology Branch of the Viral Oncology segment of the National Cancer Institute. It involves the collaboration of Dr. William London, in our laboratory, with contracts to Dr. Zenoble of Meloy Laboratories for the animal phase and to Dr. Nahmias of Emory University Medical School for the laboratory phase of the research. Statistical review and direction is provided by Dr. Jonas Ellenberg of the Office of Biometry of the National Institute of Neurological Diseases and Stroke. A pilot study was first conducted to compare 11 candidate HSV-2 strains for possible use in this study. The criteria for selection of a strain were: (a) it must be isolated from a woman who developed cervical cancer; (b) it must transform in vitro or cause production of sarcomas in hamsters; (c) it must cause genital infection in monkeys, preferably with lesions; and (d) it must cause infection (preferably with lesions) when the monkeys are reinoculated. The pilot study showed that most of the strains tested produced vaginal and cervical infection of the Cebus. This result was documented by virus isolation and antibody response. Only 5 strains produced lesions. The virus titer used did not seem to be a major factor. In a 2nd pilot study, we attempted to determine whether Cebus monkeys had a high natural rate of dysplasia or carcinoma of the cervix. A total of 83 adult female Cebus monkeys were tested by means of the Papanicolaou test. Only 1 had any evidence of abnormal cervical cells, and this was regarded as only possibly atypical. The full study (Table 2) was then initiated. It involves the repeated intravaginal inoculation of young adult Cebus monkeys with HSV-2 virus. The Benfield strain of virus, which was selected...
from the pilot study because it produces lesions and meets the other selection criteria, is being used in the full study. The animals are being housed 3 females and 1 male to a cage. We expect many pregnancies. These conditions were selected to maximize the possible production of cervical cancers, on the basis of their reported association with cervical cancers in humans. Experiments will continue for a period of 3 to 5 years.

References


Herpesvirus and Cervical Cancer Studies in Experimental Animals

John L. Sever

Cancer Res 1973;33:1509-1510.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/33/6/1509

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.