Contents

Asterisks preceding the title refer to studies in humans.

1977 Riboflavin and Cancer: A Review.
 Richard S. Rivlin.
1987 An Experimental Screening for “Systemic Adjuvants of Immunity” Applicable in Cancer Immunotherapy.
 George Mathé, Moaména Kamel, Manoucher Dezfulian, Olga Halle-Pannenko, and Charlotte Bourut.
1998 Filamentous Forms of Enveloped A Particles in Cell Cultures from Chemically Induced Rat Hepatomas.
 Jan Marc Orenstein and I. Bernard Weinstein.
2005 3-(Tetraacetyl Glucopyranos-2-yl)-1-(2-chloro-ethyl)-1-nitrosourea, an Antitumor Agent with Modified Bone Marrow Toxicity.
 Philip S. Schein, Mary G. McMenamin, and Tom Anderson.
2010 The Principal Liver Carcinogen-Protein Conjugate after a Single Dose of Hepatic Azocarcinogen.
 Sam Sorof and Emily M. Young.
2014 Schedule-dependent Therapeutic Synergism for L-Asparaginase and Methotrexate in Leukemic (L5178Y) Mice.
2020 Asparaginase in Combination Chemotherapy for Remission Induction of Childhood Acute Lymphocytic Leukemia.
2026 Growth Characteristics of Burkitt Somatic Cell Hybrids in Vitro.
2030 * Immunological Reaction in Keratoacanthoma, a Spontaneously Resolving Skin Tumor.
2034 Enzymatic and Immunological Studies on Pyruvate Carboxylase in Livers and Liver Tumors.
 Lillie O. Chang and Harold P. Morris.
2042 * Stable Chromosome Changes in a Human Malignant Melanoma.
 T. R. Chen and Margery P. Shaw.
2048 * Bactericidal and Bacteriolytic Activity of Leukemic Sera.
 Waldemar Puzanski, Wolf-Dietrich Leers, and Alastair C. Wardlaw.
2054 * Studies on Certain Cytoplasmic Enzymes and Specific Estrogen Receptors in Human Breast Cancer and in Nonmalignant Diseases of the Breast.
2063 The Isolation and Characterization of Gallium-binding Granules from Soft Tissue Tumors.
2068 Immunosuppression and Malignant Lymphomas in Graft-versus-Host Reactions.
 Catherine Solnik, Helga Gleichmann, Maureen Kavanah, and Robert S. Schwartz.
2078 Immune Capacity and Response to Antigenic Tumors.
 Robert J. Risdall, John C. Aust, and Charles F. McKhann.
2086 Protective Effects of Cycloheximide against 1-β-D-Arabinosylcytosine-induced Intestinal Lesions.
 Robert S. Verbin, Gloria Diluiso, and Emmanuel Farber.
2094 Formation of a Carcinogen of Natural Origin in the Etiology of Ultraviolet Light-induced Carcinogenesis.
 Homer S. Black and David R. Douglas.
2097 Deoxyribonucleoside Incorporation during DNA Repair of Carcinogen-induced Damage in Human Diploid Fibroblasts.
 Michael W. Lieberman and Miriam C. Poirier.
2104 Inhibition by N6,02'-Dibutyryl 3',5'-Cyclic Adenosine Monophosphate of Phosphate Transport and Metabolism in BHK21C13 and BHK21Py Cells.
 C. Blat, N. Boix, and L. Harel.
2109 Folate Deficiency in Rats Bearing the Walker Tumor 256 and the Novikoff Hepatoma.
 Lionel A. Poirier.
2114 A Method for Measuring DNA Damage and Repair in the Liver in Vivo.
 Ray Cox, Ivan Damjanov, S. E. Abanobi, and D. S. R. Sarma.
2122 Patterns of Damage and Repair of Liver DNA Induced by Carcinogenic Methylating Agents in Vivo.
 Ivan Damjanov, Ray Cox, D. S. R. Sarma, and Emmanuel Farber.
2129 Mechanism of the Inhibition of DNA Biosynthesis by 4,4'-(Diaceetyl)diophenyurea-bis(guanyl-
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149</td>
<td>The Effect of Urethan on the Incorporation of Thymidine-3H into DNA and the Activities of Some Enzymes Required for DNA Biosynthesis in Rat Regenerating Liver.</td>
<td>Kou M. Hwang, Sandra A. Murphree, and Alan C. Sartorelli.</td>
</tr>
<tr>
<td>2156</td>
<td>Nuclear Magnetic Resonance Studies of Several Experimental and Human Malignant Tumors.</td>
<td>Donald P. Holli, James S. Economou, Leon C. Parks, Joseph C. Eggleston, Leon A. Saryan, and Jeffrey L. Czeisler.</td>
</tr>
<tr>
<td>2161</td>
<td>Decrease in Oncogenic Potential of L1210 Leukemia by Triazenes.</td>
<td>Franz A. Schmid and Dorris J. Hutchison.</td>
</tr>
<tr>
<td>2166</td>
<td>Dose-Response Studies with a Pure Tumor-promoting Agent, Phorbol Myristate Acetate.</td>
<td>B. L. Van Duuren, A. Sivak, A. Segal, I. Seidman, and C. Katz.</td>
</tr>
<tr>
<td>2173</td>
<td>Antitumor Activity of Silica Gel F 254 Eluate.</td>
<td>Erik De Clercq.</td>
</tr>
<tr>
<td>2181</td>
<td>Epidermal Antigens in Experimental Keratoacanthoma and Squamous Cell Carcinoma.</td>
<td>H. K. Muller and G. R. Flannery.</td>
</tr>
<tr>
<td>2205</td>
<td>Special Announcement: Annual Meeting of the American Association for Cancer Research, Inc.</td>
<td></td>
</tr>
<tr>
<td>2206</td>
<td>Announcements.</td>
<td></td>
</tr>
<tr>
<td>2207</td>
<td>Erratum.</td>
<td></td>
</tr>
</tbody>
</table>

COVER LEGEND

German pharmacologist Hermann Druckrey (b. 1904) received his education in Giessen, Heidelberg, and Leipzig. In 1942, he became professor of pharmacology and toxicology at the University of Berlin, and by 1965, he became Director of Forscherguppe Praventivmedizin, a foundation of Deutsche Forschungsgemeinschaft, occupying the building at Stefan-Meier Strasse 8, Freiburg (illustrated).

Professor Druckrey has devoted his career to research in cancer biochemistry, chemotherapy, and carcinogenesis. His systematic studies on the relationships between chemical structure, dose, time, route of administration, and the condition of the host have been especially fruitful with N-nitroso compounds, hydrazo-, azo-, and azoxyalkanes, and triazenes. He and his co-workers recorded their important findings in a long series of papers during the 1960's in *Naturwissenschaften* and *Zeitschrift für Krebsforschung* (e.g., H. Druckrey, R. Preussmann, S. Ivanovic, and D. Schmöhl. Organotropie carciorgen Wirkungen bei 65 verschieden N-Nitroso-Verbindungen an BD Ratten. Z. Krebsforsch., 69: 103–201, 1967).

Three neoplastic effects are illustrated: brain glioma in rat following single transplacental dose of ethylnitrosourea (top); gastric adenocarcinoma in guinea pig fed methylhydroxourethan (center); and colonic multiple adenocarcinoma in rat given injections s.c. of azoxy-methane (bottom).

Nitrosamine carcinogenesis gained significance when it was shown that such compounds occur in foods and in cigarette smoke, and that they were formed in food in the presence of nitrates (cf. *Lancet*, 1: 1071–1072, 1968). These compounds are among candidates as environmental carcinogens in human cancer, especially of the gastrointestinal tract.

We are indebted to Professor Druckrey for the portrait, taken in 1965, and the illustrations and hope that his fruitful years of experimental work, which ended in 1972, are now replaced by an equally gratifying retirement.
Cancer Research

33 (9)

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/33/9.citation

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.