The Isolation and Characterization of Gallium-binding Granules from Soft Tissue Tumors

David H. Brown, Donald C. Swartzendruber, James E. Carlton, Billy L. Byrd, and Raymond L. Hayes

Medical Division, Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830

SUMMARY

Both rate-zonal and isopycnic-zonal centrifugation experiments indicate that 67Ga in rat tumors (RFT tumor and Morris 7777, 5123C, and 7794A hepatomas) and in a mouse lymphosarcoma (P-1798) is associated with lysosomal granules. The particles were identified enzymatically by their acid phosphatase and N-acetyl-β-D-glucosaminidase content. Autoradiography of selected gallium-binding granule fractions showed silver grains concentrated over electron-dense single-membrane organelles.

INTRODUCTION

Many different types of tumors in animals and man have an affinity for gallium. It is possible to detect such tumors by scintiscanning techniques using the radionuclide 67Ga (5, 8, 11). Elucidation of the mechanism of 67Ga uptake by tumor tissue should reveal those factors that control its localization and possibly lead to methods for enhancement of its affinity for cancers.

Intracellular 67Ga present in normal and neoplastic tissue 1 to 2 days after i.v. administration has been shown by EM-ARG to localize in lysosome-like bodies in a variety of cell types (14). The rate-zonal centrifugation and enzymatic studies presented here provide further evidence of the lysosomal nature of the GBG previously identified by EM-ARG.

MATERIALS AND METHODS

67Ga (Oak Ridge National Laboratory, Oak Ridge, Tenn.) was prepared as the neutral citrate and injected i.v. in the tail vein (1 mg citrate per kg). Detection of the 67Ga present in gradient fractions was done in a well-type scintillation counter.

The following animals and transplanted tumors were used: male Buffalo rats implanted with Morris 7794A, 5123C, and 7777 hepatomas; male Fischer rats implanted with RFT tumors (9); and female BALB/c × DBA/2 F1 mice with P-1798 lymphosarcomas. Animals were maintained on the same diet and fed ad libitum.

Twenty-four to 48 hr after the administration of 67Ga (~1 mCi/kg), the animals were lightly anesthetized with ether and the tumor tissues were excised. The tissues were rinsed with 50 ml of 0.25 M sucrose and then homogenized in cold (5°) 0.25 M sucrose (10% w/v) in a Potter-Elvehjem-type homogenizer operating at 1000 rpm (5 strokes), a procedure considered acceptable for release of subcellular organelles with minimal loss of intact particles resulting from the tissue-rupturing technique (4). Nuclei and cell debris were removed from the homogenate by centrifugation in a Sorvall GLC-1 centrifuge for 2500 g-min. Subcellular particles from the homogenates (60 to 100 ml) were then isolated by rate-zonal centrifugation in a B-XXIX zonal rotor (loaned by Dr. N. G. Anderson, MAN Program, Oak Ridge National Laboratory) in a 1-liter gradient of 20 to 30% w/w sucrose using our sequential product recovery technique (2). The rotor effluents were monitored at 260 nm. All operations were carried out at 5°.

A modification of the zonal centrifugation procedure of Leighton et al. (12) was also used to isolate lysosomes. Male Buffalo rats bearing Morris 5123C hepatomas were given injections i.v. of the nonionic detergent Triton WR-1339 (Rohm and Haas Co., Philadelphia, Pa.) 2 days before i.v. injection of 67Ga. Twenty-four hr after giving 67Ga we killed the animals and removed and homogenized the tumors as described above. (A control experiment in which no WR-1339 was administered was also performed.) The brei was then centrifuged for 10,000 g-min to remove the cell debris and nuclei. The supernatant (100 ml) was layered over a 500-ml sucrose gradient (20 to 25%) in an Oak Ridge type B-XXIX zonal rotor. Outboard of the gradient were 3 steps consisting of 300 ml of 35%, 200 ml of 45%, and 227 ml of 55% sucrose. The centrifuge was operated at 25,000 rpm for a total of 4.3 × 10⁶ g-min (3,750 × 10³ w²t). All operations were carried out at 5°.

Fractions from the centrifugations were assayed for acid phosphatase (EC 3.1.3.2) and N-acetyl-β-D-glucosaminidase (EC 3.2.1.30) by the automated method described by Beck (1). Protein was measured by an automated modified Lowry procedure (6), and sucrose concentrations were determined refractometrically. A method described by Hinton et al. (10) was used to correct for sucrose error in the enzyme and protein determinations. Electron microscopy and EM-ARG were performed on the GBG fractions; fixation,
staining, and autoradiography were performed as described previously (14).

RESULTS AND CONCLUSIONS

The zonal profiles of homogenates (cleared of nuclei and cell debris) of 3 different tumors, a poorly differentiated rat tumor (RFT), a mouse lymphosarcoma (P-1798), and a Morris rat hepatoma (7777), are shown in Chart 1. The gradient profiles of the ⁶⁷Ga activity shown in Chart 1 indicate that the GBG were primarily located in the 6th-stage particle zone. It is apparent that the GBG from each of the tumors sedimented at similar rates in the gradients and therefore had similar sedimentation coefficients. ⁶⁷Ga recoveries from the rotor varied from 85 to 95%.

To determine whether any of the radioactivity remaining in the starting zone would sediment after longer centrifugation, we removed the 6th-stage particle zone (as in the other centrifugal integrals) and replaced it with an equal volume of 45% sucrose; the rotor was then reaccelerated to 25,000 rpm and held there 17 hr for a centrifugal integral of 42,300 x 10^3 w^t. It is evident from the results of the RFT experiment shown in Chart 1 that only a very small percentage of the ⁶⁷Ga activity banded on the 45% sucrose cushion after this additional centrifugal integral.

Enzymatic evidence for the lysosomal nature of the 6th-stage GBG is shown in Chart 2 for a Morris 7794A hepatoma. The greatest relative specific activity (percentage of total enzyme activity divided by percentage of total protein) was found in the 6th-stage particle fractions. Lysosomes were, however, distributed in all the particle zones. Recoveries of protein, acid phosphatase, N-acetyl-β-D-glucosaminidase, and ⁶⁷Ga were, respectively, 96, 97, 90, and 104%.

We believe the radioactivity normally remaining in the starting zone after the centrifugal integral of 800 x 10^3 w^t (Charts 1 and 2) to be mostly non-particle-bound ⁶⁷Ga, probably arising from broken lysosomes and plasma ⁶⁷Ga not removed in the rinse procedure before homogenizing.

We obtained further evidence for the lysosomal nature of the GBG by isolating “light” lysosomes by isopycnic-zonal centrifugation by the method of Leighton et al. (12). The procedure intrinsically depends upon modifying the density of lysosomes in experimental animals. The nonionic detergent Triton WR-1339 is injected 2 to 3 days prior to administration of ⁶⁷Ga. This material is taken up by lysosomes causing them to become less dense than the mitochondria with which they “normally” band. Hence, one can separate the 2 organelles from each other by isopycnic centrifugation. The density of such altered lysosomes is reported to be 1.135 g/ml (12). The results of a modified version of this procedure are shown in Chart 3. Only a small percentage of the total protein (4%) occurred in the “light” lysosomal zone (ρ = 1.135) and the acid phosphatase activity of the particles in this zone was quite high (22%), as was the ⁶⁷Ga activity (27%) compared to the control experiment (no administered WR-1339) where only 12% of the acid phosphatase activity and 8% of the ⁶⁷Ga activity were found. A comparison of the relative specific acid phosphatase activities of the light lysosomes regions of the gradients in the 2 experiments [65 (+WR-1339), 17 (—WR-1339)] indicated that the tumor tissue lysosomes did take up Triton WR-1339. The percentage of ⁶⁷Ga was also greater in the zone where the light lysosomes banded (see above).

It is also evident, however, that the more dense particles contained a large amount of acid phosphatase (27%) and ⁶⁷Ga activity (21%). Leighton et al. (12) found normal as well as light lysosomes in WR-1339-treated animals, which
could account for the acid phosphatase and 67Ga activity seen in the heavier particles. The large amounts of 67Ga (49%) and acid phosphatase (46%) activity in the soluble "zone" could be accounted for by the rupturing of some of the light lysosomes as a result of increased fragility when they take up the detergent. The control experiment showed only 22% acid phosphatase activity and 10% 67Ga in this zone. Recoveries in this study are indicated in the legend to Chart 3.

Electron microscopic autoradiograms made from thin sections of isolated 6th-stage GBG showed silver grains predominantly localized over small electron-dense organelles limited by single membranes (Figs. 1 and 2). The granules associated with the silver grains were morphologically similar to those identified previously as lysosomes in 67Ga autoradiograms of murine tissues (14). Three distinct regions in the pellets obtained from the 6th-stage fractions were distinguished by ultrastructural study. These were: (a) mitochondria; (b) vesicles of rough-surfaced endoplasmic reticulum; and (c) single-membrane-limited, electron-dense structures about 0.25 to 0.5 μm in diameter. More silver grains were found over the regions containing the most lysosomes and fewer silver grains were observed over regions of the pellet in which mitochondria and vesicles of rough-surfaced endoplasmic reticulum predominated.

DISCUSSION

Swartzendruber et al. (14), using EM-ARG, have shown that intracellular 67Ga present in normal and neoplastic tissue 1 to 2 days after i.v. administration is localized in lysosome-like bodies in a variety of cell types. The subcellular fractionation and enzymatic studies reported here for 4 different transplanted tumors provide further evidence for the lysosomal nature of the organelles previously identified by EM-ARG.

Contrary to the results that we report here, those of Deckner et al. (3) with Ehrlich ascites cells and Orii (13) with Yoshida sarcoma have indicated that little or no 67Ga is associated with lysosomes. Orii also reported that no accumulation of 67Ga was observed in liver lysosomes, also contrary to our previous findings (2) as well as those of Haubold and Aulbert (7). Orii's results and those of Deckner et al. may, therefore, be due to the disruption of lysosomes in some phase of the fractionation procedures that they used.

REFERENCES

Fig. 1. An electron microscopic autoradiogram of rat tumor (RFT) 6th-stage fraction containing the majority of 60Ga activity. This area of the block contained more lysosomes and more silver grains than adjacent regions. × 31,000.

Fig. 2. An electron microscopic autoradiogram of 6th-stage fraction from mouse lymphosarcoma (P-1798) showing many silver grains localized in a region containing many lysosomes. A few mitochondria and vesicles of rough-surfaced endoplasmic reticulum are also present. × 29,000.
The Isolation and Characterization of Gallium-binding Granules from Soft Tissue Tumors

David H. Brown, Donald C. Swartzendruber, James E. Carlton, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/33/9/2063

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.