Toxicity and Antitumor Activity of Hexamethylmelamine and Its N-Demethylated Metabolites in Mice with Transplantable Tumors

Lanny M. Lake, Edward E. Grunden, and Bruce M. Johnson

Division of Clinical Oncology, University of Wisconsin Medical School, Madison, Wisconsin 53706

SUMMARY

N-Demethylated metabolites of the antineoplastic agent hexamethylmelamine were synthesized, and their toxicities and antitumor activities were determined in vivo. Determinations of the lethal dose for 10% of the male C57BL × DBA/2 F₁ (hereafter called BD2F₁) mice showed hexamethylmelamine toxicity to be decreased by N-demethylation; the metabolites showed a direct relationship between potency (mmoles/kg/day) and number of methyl groups present. In BD2F₁ mice bearing Sarcoma 180 or Lewis lung carcinoma, the antitumor activities of the methylmelamines decreased with a reduction in number of methyl groups, but were similar at equitoxic levels. Results were similar in L1210 leukemic mice treated with lethal dose levels of the metabolites for 10% of the mice when mean survival times were measured. The therapeutic equality produced with equitoxic levels, together with the ineffectiveness of melamine, suggested that the presence of a methyl group, rather than the number, was the determining factor in the antitumor activity of the methylmelamines.

INTRODUCTION

Completed Phase I and Phase II trials (22–25) showed HMM ² to be a clinically effective antitumor agent. A report by Blum et al. (1) listed small-cell (oat) carcinoma of the lung, ovarian adenocarcinoma, lymphoma, and breast cancer as the tumor types that responded to HMM. The mechanism by which the drug exerts its antitumor action remains unknown. Toxicity and clinical response rates (1), as well as close structural similarity to the known alkylator, triethylene melamine, suggested an alkylating action for HMM. Worzalla et al. (26), as part of a study to identify the metabolic pathways of HMM, tested the drug and its N-demethylated metabolites for alkylating action using the chemical indicator 4-(p-nitrobenzyl)pyridine. None of the compounds exhibited alkylating activity. Negative results were also obtained when the compounds were assayed in vitro for their ability to inhibit dihydrolate reductase (27). These results duplicated the conclusions of Boíkovec and DeMilo (2). They studied the chemosterilizing activity of HMM in houseflies and concluded that HMM was neither an alkylating agent nor a folate antagonist.

Worzalla et al. (27) suggested that the metabolism of HMM might result in an N-demethylated homolog that would be more active and/or less toxic than the parent compound. The present study was designed to test this hypothesis by examining the compounds in tumor systems in which HMM was reported to be inactive (L1210 leukemia) and moderately active (Sarcoma 180) (8). A 3rd tumor system (Lewis lung carcinoma) was also used, since it has been included in the drug screening program of the NCI and Sarcoma 180 has been dropped. Data from the study were analyzed for structural relationships indicating antitumor activity and a possible mode of action.

MATERIALS AND METHODS

Chemicals. HMM was provided by the Clinical Branch, Collaborative Research, NCI, USPHS, and was used as received. Melamine (Aldrich Chemical Co., Milwaukee, Wis.) was recrystallized from water. Pentamethylmelamine, N₂,N₄,N₆-tetramethylmelamine, N₂,N₄,N₆,N₆-tetramethylmelamine, N₂,N₄,N₆,N₄-trimethylmelamine, N₂,N₄,N₆,N₄,N₄-trimethylmelamine, N₂,N₄,N₆,N₆,N₄,N₄-dimethylmelamine, and N₂,N₄,N₆,N₆,N₄,N₆-dimethylmelamine were synthesized using the methods described by Boíkovec and DeMilo (2), and monomethylmelamine was synthesized according to the method of Pearlmans and Banks (13). Melting points were identical to literature values and purity was greater than 99% by gas chromatography.

Injection solutions were prepared for each dose level by adding the weighed drug to 0.05 N HCl (two-thirds of final volume), titrating with 1.0 N HCl until dissolution, and diluting to final volume with 0.05 N HCl. Final pH of solutions was about 1.45. Concentrations were adjusted so that 0.01 ml/g body weight was administered i.p. Melamine, monomethylmelamine, and N₂,N₂-dimethylmelamine were prepared as suspensions in 1% sodium carboxymethylcellulose.

Animals. Male BD2F₁ mice (A. R. Schmidt, Madison, Wis.) weighing 18 to 20 g were housed for at least 1 week before use and were provided Purina laboratory chow and tap water ad libitum for the duration of the experiment.
Tumor Lines. Sarcoma 180 was maintained by serial s.c. transplantation into BD2F1 mice every 7 days. Lewis lung carcinoma (generously provided by Dr. Bernard Kline, Wisconsin Alumni Research Foundation Institute, Madison, Wis.) was maintained by serial s.c. transplantation into C57BL/6 mice every 14 days. Tumor tissue was removed aseptically into Eagle’s medium (Minimum Essential Medium, Microbiological Associates, Inc., Bethesda, Md.), trimmed of necrotic and fibrous tissue, and minced with scissors into fragments for s.c. implantation into the flank region using a 16-gauge trocar. Tumor fragments were tested for sterility by placing samples into tubes containing thioglycolate broth (Difco Laboratories, Detroit, Mich.) and checking for bacterial growth after 48 hr. If growth was found, the experiment was discarded.

L1210 leukemia (obtained from Dr. Kline) was maintained by weekly passage of 10^6 cells i.p. in DBA/2 mice (A. R. Schmidt Co., Madison, Wis.). For determination of antitumor activity, male BD2F1 mice were inoculated i.p. with 10^5 ascites cells.

Toxicity. Acclimatized BD2F1 mice were randomized into groups of 6 animals/dose level, weighed, given i.p. injections once daily for 5 consecutive days, weighed on Day 5, and observed through Day 12 for deaths. To determine LD$_{10}$ values, a line of best fit was drawn for each compound using linear regression analysis on the results, expressed as log dose versus probit of percentage survivors. A minimum of 4 doses was used for evaluation of each compound.

Therapeutic Studies. Groups of 10 BD2F1 mice/dosage regimen were given tumor transplants on Day 0, i.p. injections of 0.01 ml/g body weight of drug solution on Days 1 to 5, and sacrificed on Day 12. Tumors were excised and weighed (± 10 mg) individually. Control mice (20/group) received 0.05 N HC1. Only those groups with 70% survival were used for evaluation. Tumors weighing ≥ 40 mg in control mice were labeled “no takes.” Designation of “cure” or no take in the treated groups was based on NC1 Drug Research and Development Division standards (7). Percentage of tumor growth inhibition relative to control for each dose was analyzed using a linear regression technique on the log dose versus probit of percentage of tumor inhibition relationship. Four to 8 points in the dosage range of 0.5 to 1.0 \times LD$_{10}$ were used for each regression analysis. The dose required to produce 90% tumor growth inhibition, i.e., MED, and the percentage of tumor growth inhibition at the LD$_{10}$ dose level were extrapolated from the linear regression line.

Increase in life-span studies using L1210 leukemia and Lewis lung carcinoma were done using the same 5-day injection schedule as above. Percentage of increase in life-span for L1210 was calculated from mean survival times (animals were checked for deaths every 6 to 12 hr). Median survival time was used for evaluating the Lewis lung data (animals were checked for deaths daily).

RESULTS

Toxicity of HMM and Its N-Demethylated Homologs. Table 1 shows that a decrease in potency occurred as the number of methyl groups was reduced. The LD$_{10}$ values ranged from 0.46 mmoles/kg/day for HMM to 6.04 mmoles/kg/day for melamine, a spectrum characterized by a 13-fold decrease in potency. The decrease was gradual initially: the successive reductions in number of methyl groups from 6 to 3 were accompanied by small changes in the relative potency. When the number of methyl groups was reduced from 3 to 2, a precipitous drop in potency occurred. HMM was about 7 times more potent than were the 2 dimethylmelamines. Succeeding reductions in the remaining number of methyl groups gave homologs with lower relative potencies.

Toxicity of the compounds at their LD$_{10}$ levels is indicated by the percentage of weight loss produced with each compound for the 5-day injection period. As expected, the weight losses follow closely the relative potencies of the homologs; HMM and pentamethylmelamine produced the largest percentage weight loss, while monomethylmelamine and melamine produced the least. The low percentage weight loss induced with each of the tetramethylmelamines relative to that induced with the other homologs containing a comparable number of methyl groups could indicate that their extrapolated LD$_{10}$ values were lower than the actual values.

Effect of HMM and Its N-Demethylated Homologs on the Growth of Sarcoma 180 and Lewis Lung Tumors in Vivo. BD2F1 mice (10/dose level) were given s.c. implants of either Sarcoma 180 or Lewis lung tumor fragments on Day 0. For each compound, a series of doses was administered i.p. once daily on Days 1 through 5. The mice were sacrificed on Day 12 and the tumors were removed. The average tumor weights of the treated mice were compared to the average tumor weight of the control mice to determine percentage of inhibition of tumor growth. A plot of the results as a log dose versus probit of percentage of inhibition relationship enabled the MED required to produce 90% inhibition of tumor growth, and the percentage of inhibition of tumor growth produced by the maximum tolerated dose, i.e., LD$_{10}$, to be determined from the graph of each compound. Results are summarized in Tables 2 and 3.

The therapeutic potency (MED) of HMM relative to that of each of its N-demethylated homologs was almost quantitatively identical in each of the 2 tumor systems. Furthermore, the relative therapeutic potencies followed qualitatively the relative toxic potencies shown in Table 1. For example, as in the toxicity study, the loss of a methyl group from the trimethylmelamines resulted in the largest decrease in therapeutic potency; HMM was 11 times more potent than N$^2,N^4$-dimethylmelamine and 7 times more potent than N2N4-dimethylmelamine. These numbers represent an average decrease of more than 200% in the MED (mmoles/kg/day) from that of the trimethylmelamines. It was significant that the absence of methyl groups, i.e., melamine, resulted in an inactive compound.

There was an absence of a distinct pattern of diminishing efficacy (percentage of inhibition at the LD$_{10}$ level) concurrent with a reduction in the number of methyl groups. HMM and pentamethylmelamine exhibited the greatest efficacy. The lower activity of the tetramethylmelamines at their LD$_{10}$ levels would be expected if the extrapolated LD$_{10}$
Table 1

LD₅₀ values for HMM and its N-demethylated homologs

Groups of 6 BD2F₁ mice (at least 6 levels/drug) were given i.p. injections once daily for 5 days and weighed on Days 1 and 5, and survival was recorded through Day 12. LD₅₀ values were obtained using linear regression analysis on the log dose versus probit of percentage of survivors relationship.

<table>
<thead>
<tr>
<th>Drug</th>
<th>mg/kg/day</th>
<th>mmol/kg/day</th>
<th>Relative potency</th>
<th>% wt loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>96</td>
<td>0.46</td>
<td>1.0</td>
<td>14.4</td>
</tr>
<tr>
<td>Pentamethylmelamine</td>
<td>108</td>
<td>0.55</td>
<td>0.84</td>
<td>14.4</td>
</tr>
<tr>
<td>N₂,N₂,N₄,N₄-Tetramethylmelamine</td>
<td>78</td>
<td>0.43</td>
<td>1.07</td>
<td>7.3</td>
</tr>
<tr>
<td>N₂,N₂,N₄,N₄-Tetramethylmelamine</td>
<td>101</td>
<td>0.55</td>
<td>0.84</td>
<td>9.6</td>
</tr>
<tr>
<td>N₂,N₄,N₄-Trimethylmelamine</td>
<td>155</td>
<td>0.92</td>
<td>0.50</td>
<td>11.0</td>
</tr>
<tr>
<td>N₂,N₄,N₄-Trimethylmelamine</td>
<td>207</td>
<td>1.23</td>
<td>0.37</td>
<td>12.5</td>
</tr>
<tr>
<td>N₂,N₂-Dimethylmelamine</td>
<td>465</td>
<td>3.02</td>
<td>0.15</td>
<td>7.8</td>
</tr>
<tr>
<td>N₂,N₂-Dimethylmelamine</td>
<td>550</td>
<td>3.57</td>
<td>0.13</td>
<td>9.8</td>
</tr>
<tr>
<td>Monomethylmelamine</td>
<td>565</td>
<td>4.03</td>
<td>0.11</td>
<td>3.6</td>
</tr>
<tr>
<td>Melamine</td>
<td>762</td>
<td>6.04</td>
<td>0.08</td>
<td>1.0</td>
</tr>
</tbody>
</table>

a Relative potency = LD₅₀ [HMM]/LD₅₀ [homolog] based on mmoles/kg/day.

* Average percentage of weight loss on Day 5. Controls lost 3.5% receiving 0.01 ml per g body weight of 0.05 HCl per day.

* Drugs were given as suspensions in 1% sodium carboxymethylcellulose; all other drugs were dissolved in 0.05 HCl.

Table 2

Therapeutic evaluation of HMM and its N-demethylated homologs in BD2F₁ mice bearing Sarcoma 180 tumors

Groups of 10 BD2F₁ mice were given s.c. implants of Sarcoma 180 tumor fragments via trocar on Day 0, treated i.p. once daily on Days 1 to 5 with drug levels ranging from 0.5 × LD₅₀ to LD₅₀, and sacrificed on Day 12, and tumors were excised and weighed. Control animals (20/group) received 0.01 ml of 0.05 HCl per g of body weight. Percentage of inhibition of tumor growth was calculated using average tumor weight for each test group and control. Linear regression analysis performed on a log dose versus probit of percentage of inhibition relationship gave values for MED and percentage of inhibition at LD₅₀ for each drug.

<table>
<thead>
<tr>
<th>Drug</th>
<th>MED mg/kg/day</th>
<th>mmol/kg/day</th>
<th>Relative potency</th>
<th>Therapeutic index</th>
<th>% inhibition at LD₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM (80)*</td>
<td>108</td>
<td>0.51</td>
<td>1.0</td>
<td>0.89</td>
<td>82</td>
</tr>
<tr>
<td>Pentamethylmelamine (40)</td>
<td>155</td>
<td>0.79</td>
<td>0.65</td>
<td>0.70</td>
<td>75</td>
</tr>
<tr>
<td>N₂,N₂,N₄,N₄-Tetramethylmelamine (50)</td>
<td>148</td>
<td>0.81</td>
<td>0.63</td>
<td>0.53</td>
<td>49</td>
</tr>
<tr>
<td>N₂,N₂,N₄,N₄-Tetramethylmelamine (50)</td>
<td>170</td>
<td>0.93</td>
<td>0.55</td>
<td>0.59</td>
<td>49</td>
</tr>
<tr>
<td>N₂,N₄,N₄-Trimethylmelamine (40)</td>
<td>195</td>
<td>1.16</td>
<td>0.44</td>
<td>0.79</td>
<td>62</td>
</tr>
<tr>
<td>N₂,N₄,N₄-Trimethylmelamine (60)</td>
<td>240</td>
<td>1.43</td>
<td>0.36</td>
<td>0.83</td>
<td>80</td>
</tr>
<tr>
<td>N₂,N₄-Dimethylmelamine (40)</td>
<td>640</td>
<td>4.15</td>
<td>0.12</td>
<td>0.73</td>
<td>61</td>
</tr>
<tr>
<td>N₂,N₄-Dimethylmelamine (40)</td>
<td>980</td>
<td>6.36</td>
<td>0.08</td>
<td>0.56</td>
<td>33</td>
</tr>
<tr>
<td>Monomethylmelamine (40)</td>
<td>950</td>
<td>6.78</td>
<td>0.08</td>
<td>0.59</td>
<td>40</td>
</tr>
<tr>
<td>Melamine (20)</td>
<td>(Inactive)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Dose that would produce a 90% inhibition of tumor growth.

* Ratio of MED of HMM to MED of homolog (mmol/kg/day).

* Ratio of LD₅₀ to MED (mg/kg/day) for each compound.

* Numbers in parentheses, total number of mice used for therapeutic evaluation.

values were lower than the actual values suggested above. Still, the efficacies of the tetramethylamines, the trimethylamines, and N₂,N₃-dimethylmelamine were similar in magnitude. The low efficacy of N₂,N₄-dimethylmelamine contrasted with that of its positional isomer and was closer to that of monomethylmelamine. The range of efficacy produced with the dimethylamines encompassed the point at which a compound was characterized as active or inactive by the screening protocol of NCI, namely, ≥58% inhibition of tumor weight relative to the untreated controls (7). This suggested that the presence of 2 methyl groups was pivotal in determining whether a homolog was an effective antitumor compound.

The therapeutic index (LD₅₀/MED) for each of the methylmelamines was determined in order to find what effect N-demethylation had on the margin of safety of HMM. Tables 2 and 3 show no substantial differences in the therapeutic indices. None of the compounds had an index of
1.0 or greater, reflecting the undesirable overlap of toxicity at the dose necessary for effective inhibition of tumor growth.

Effect of HMM and Its \(N\)-Demethylated Homologs on Survival Times of BD2F\(_1\) Mice Bearing Lewis Lung Tumors or L1210 Leukemia. The median survival times of BD2F\(_1\) mice bearing Lewis lung tumors were measured as an additional index of the antitumor activity of each of the compounds for 2 reasons: (a) the parameter is an effective index of the activity of a drug because toxicity-related effects have been reported to have less influence on survival time than on tumor weight inhibition (15); and (b) the effectiveness of a compound on tumor weight inhibition does not indicate a similar degree of effectiveness in increasing the survival time of the tumor-bearing animals (5).

Two-thirds of the LD\(_{10}\) level of each compound was administered using the injection schedule described in the tumor weight inhibition studies above. There was essentially no increase in the median survival of the treated groups over control groups (average increase was 4.4%, with a range of 0 to 12.1% increase in median survival time). The percentage of weight loss seen at two-thirds of the LD\(_{10}\) (average weight loss was 7.7%) was not appreciably lower than that seen in Table 1 with the LD\(_{10}\) level of each of the compounds. This suggests that toxicity, as measured by weight loss, may not be an accurate indicator of the antitumor effectiveness of these compounds.

For the studies involving L1210 leukemia, each of the compounds was administered at its LD\(_{10}\) level using the 5-day injection schedule described previously. The results in Table 4 show that none of the compounds increased the mean survival times of the treated groups by 25% or greater; thus, none was active as described by NCI’s standard (7). The failure of melamine to significantly increase the mean survival time (\(p > 0.05\)) of the treated group beyond that of the control group was consistent with its demonstrated inactivity against the Sarcoma 180 (Table 2) and Lewis lung (Table 3) tumors. With the exceptions of \(N_2,N_4\)-dimethylmelamine, \(N_2,N_4,N_6\)-trimethylmelamine, the presence of a methyl group(s) on the melamine nucleus resulted in metabolites that produced both significant (\(p < 0.05\)) and similar increases in the mean survival times of the respective groups beyond that of the control group. The \(N_2,N_4,N_6\)-trimethylmelamine-treated group had a mean survival time that was less than that of the control group. This, together with the largest percentage of weight loss of the treated groups, suggested an insidious toxicity not reflected in the number of toxic deaths produced. The large number of toxic deaths with \(N_2,N_4\)-dimethylmelamine and \(N_2,N_4,N_8\)-tetramethylmelamine, and \(N_2,N_4\)-dimethylmelamine was unexpected and may have been due to the low pH of the drug solutions (these compounds required more 1.0 N HCl to be put into solution, as explained under “Materials and Methods”). In view of the toxicity exhibited by \(N_2,N_4\)-dimethylmelamine, the gain in weight of that group was an anomaly that contrasted with the weight losses shown for the other groups.

DISCUSSION

Prior to this study, a number of compounds, later identified by Worzalla et al. (26) as metabolites of HMM, specifically melamine (6, 10, 17), \(N_2,N_4\)-dimethylmelamine (11, 19), \(N_2,N_4,N_8\)-trimethylmelamine (14, 18), and \(N_2,N_4,N_8\)-tetramethylmelamine (20), were included in...
animal screening studies and reported to be inactive. These previous studies were carried out by several investigators at different times under varied conditions, making it impossible to evaluate structure-activity relationships. For this reason, all 9 methylmelamines and melamine were tested and evaluated as a group in this study.

The LD_{10} values reported in Table 1 should be approximate to the actual values. The use of a minimum number of mice for each compound and for each dose level enhanced the probability that the extrapolated values were either above or below the actual values. The LD_{10} values for the tetramethylmelamines, especially N₂,N₂,N₆,Tetramethylmelamine, may be low, as shown by the smaller percentage of weight loss incurred over the 5-day injection period relative to that produced by the homologs with the next higher (pentamethylmelamine) and lower (trimethylmelamines) numbers of methyl groups (Table 1). Since the determination of efficacy, i.e., the maximum percentage of tumor growth inhibition, was based on the extrapolated LD_{10} values, any error in the LD_{10} of a homolog would be transposed into the magnitude of the maximum percentage of tumor inhibition. Therefore, a stringent quantitative structure-activity analysis with respect to efficacy was not stressed, but instead, a qualitative analysis that described the pattern of activity (efficacy) that accompanied the terminal of efficacy, rather than the number of groups, was the major determinant of whether the homolog functioned as an antitumor compound. Furthermore, if methyl group availability was reduced from 6 to 4; however, when the methyl groups were reduced to 2 or less, a precipitous decrease in potency resulted. The primary effect of N-demethylation on HMM was the production of less toxic and less therapeutically potent metabolites. The decrease in therapeutic potency of the homologs as the number of methyl groups decreased and the inability of melamine to exhibit antitumor activity suggested a requisite role for the methyl groups in determining the antitumor activity of the methylmelamines.

An effect of structural change on activity was shown for the homologs that had their positional isomers included in this study. The most toxic and therapeutic positional isomers were those that possessed the most dimethyl-substituted nitrogens. A parallel finding was reported by Worzalla and co-workers (26), who noted that the metabolites of HMM found in the urine of humans and rats indicated a dimethylamino group. This suggested that a difference in the rates of N-demethylation may be responsible for the difference in potencies of the isomers. Such a proposal seems logical since it is known that secondary and tertiary amines are N-demethylated at different rates (3).

A qualitative analysis of the results showed that, in contrast to the effect of N-demethylation on the toxic and therapeutic potencies, the successive removal of methyl groups from HMM did not result in substantial reductions in the efficacies of the methylmelamine homologs (Tables 2 and 3). They were more similar in magnitude than dissimilar. This finding was reflected in the similar increases in the average survival times of L1210 leukemia-bearing mice treated with equitoxic doses of the homologs (Table 4). These results suggested that the presence of a methyl group, rather than the number of groups, was the major determinant of whether the homolog functioned as an antitumor compound. Furthermore, if methyl group availability was reduced from 6 to 4; however, when the methyl groups were reduced to 2 or less, a precipitous decrease in potency resulted. The primary effect of N-demethylation on HMM was the production of less toxic and less therapeutically potent metabolites. The decrease in therapeutic potency of the homologs as the number of methyl groups decreased and the inability of melamine to exhibit antitumor activity suggested a requisite role for the methyl groups in determining the antitumor activity of the methylmelamines.

An effect of structural change on activity was shown for the homologs that had their positional isomers included in this study. The most toxic and therapeutic positional isomers were those that possessed the most dimethyl-substituted nitrogens. A parallel finding was reported by Worzalla and co-workers (26), who noted that the metabolites of HMM found in the urine of humans and rats indicated a dimethylamino group. This suggested that a difference in the rates of N-demethylation may be responsible for the difference in potencies of the isomers. Such a proposal seems logical since it is known that secondary and tertiary amines are N-demethylated at different rates (3).

A qualitative analysis of the results showed that, in contrast to the effect of N-demethylation on the toxic and therapeutic potencies, the successive removal of methyl groups from HMM did not result in substantial reductions in the efficacies of the methylmelamine homologs (Tables 2 and 3). They were more similar in magnitude than dissimilar. This finding was reflected in the similar increases in the average survival times of L1210 leukemia-bearing mice treated with equitoxic doses of the homologs (Table 4).

The LD_{10} values reported in Table 1 should be approximate to the actual values. The use of a minimum number of mice for each compound and for each dose level enhanced the probability that the extrapolated values were either above or below the actual values. The LD_{10} values for the tetramethylmelamines, especially N₂,N₂,N₆,Tetramethylmelamine, may be low, as shown by the smaller percentage of weight loss incurred over the 5-day injection period relative to that produced by the homologs with the next higher (pentamethylmelamine) and lower (trimethylmelamines) numbers of methyl groups (Table 1). Since the determination of efficacy, i.e., the maximum percentage of tumor growth inhibition, was based on the extrapolated LD_{10} values, any error in the LD_{10} of a homolog would be transposed into the magnitude of the maximum percentage of tumor inhibition. Therefore, a stringent quantitative structure-activity analysis with respect to efficacy was not stressed, but instead, a qualitative analysis that described the pattern of activity (efficacy) that accompanied the terminal of efficacy, rather than the number of groups, was the major determinant of whether the homolog functioned as an antitumor compound. Furthermore, if methyl group availability was reduced from 6 to 4; however, when the methyl groups were reduced to 2 or less, a precipitous decrease in potency resulted. The primary effect of N-demethylation on HMM was the production of less toxic and less therapeutically potent metabolites. The decrease in therapeutic potency of the homologs as the number of methyl groups decreased and the inability of melamine to exhibit antitumor activity suggested a requisite role for the methyl groups in determining the antitumor activity of the methylmelamines.

An effect of structural change on activity was shown for the homologs that had their positional isomers included in this study. The most toxic and therapeutic positional isomers were those that possessed the most dimethyl-substituted nitrogens. A parallel finding was reported by Worzalla and co-workers (26), who noted that the metabolites of HMM found in the urine of humans and rats indicated a dimethylamino group. This suggested that a difference in the rates of N-demethylation may be responsible for the difference in potencies of the isomers. Such a proposal seems logical since it is known that secondary and tertiary amines are N-demethylated at different rates (3).
responsible for activity, a smooth correlation would not be expected unless each compound had similar solubility, partition coefficient, and pK. A useful structure-activity relationship would require these considerations.

One mode of action by which methyl groups could exert an antitumor action has been proposed by Borkovec and DeMilo (2). They suggested that HMM could demethylate to form formaldehyde, a known weak alkylator. Support for this hypothesis is a study conducted with hexamethylenetetramine (methenamine) by Stevens and Lehman (16). Hexamethylenetetramine is currently used as a urinary antiseptic that has as its mechanism of action the slow release of formaldehyde in acidic solutions (21). Stevens and Lehman reported (16) that the drug exhibited an inhibitory effect on the growth of Ehrlich ascites tumors in vivo; the effectiveness of the drug increased as the pH of the drug solutions decreased. If the assumption is made, a priori, that the mechanism responsible for the antibacterial action is also responsible for the antitumor action, a mechanistic role for the methyl groups of the methylmelamine homologs would be as precursors of formaldehyde. The mechanism by which the methyl groups (formaldehyde) produce an antitumor effect may be the same as that proposed for the antitumor drug, procarcabazine (NSC-77213), i.e., through the transmethylation of the 7-guanine position of transfer RNA by the N-methyl group of the drug with inhibition of the synthesis of transfer RNA, protein, and finally DNA and RNA (12).

In contrast to hexamethylenetetramine, the formation of formaldehyde from the methylmelamines is a result of the microsomal oxygenase reactions involved in the N-demethylation process (4). Thus, the failure by Worzalla et al. (26) to show any alkylating activity by the methylmelamines when tested with 4-(p-nitrobenzyl)pyridine in vitro could have been due to the absence of microsomal enzymes from the assay protocol.

ACKNOWLEDGMENTS

We thank J. F. Worzalla, B. D. Kaiman, and B. Manske for synthesizing the compounds, K. Deighton and D. Scott for assistance with the manuscript preparation, and Dr. G. T. Bryan for many helpful discussions.

REFERENCES

Toxicity and Antitumor Activity of Hexamethylmelamine and Its N-Demethylated Metabolites in Mice with Transplantable Tumors

Lanny M. Lake, Edward E. Grunden and Bruce M. Johnson

Updated version
Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/35/10/2858

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.