The Role of Adenosine Triphosphate, Chalones, and Specific Proteins in Controlling Tumor Growth Fraction

J. W. Harris, Y. P. Wong, C. R. Kehe, and S. S. Teng

Laboratory of Radiobiology, University of California, San Francisco, California 94143

SUMMARY

During growth of Ehrlich ascites tumor cells in vivo, the proportion of cells in the S phase of the proliferative cell cycle decreases in a manner analogous to the decreasing growth fraction often associated with the growth of solid tumors. An examination of biochemical parameters that might regulate the growth fraction of Ehrlich ascites tumors by causing accumulation of cells in G2-M phase shows that (a) the tumor progresses from an aerobic to an anaerobic state as it approaches the plateau phase of growth, as indicated by lactate dehydrogenase content, but cellular adenosine triphosphate content remains constant; (b) tumor-specific growth inhibitors (chalones) are not detectable in cell-free ascites fluid from plateau-phase tumors; (c) electrophoretically identifiable soluble proteins isolated from tumor cells that have been exposed to labeled amino acids in vivo are qualitatively identical during early and late tumor growth; and (d) ornithine decarboxylase activity increases in a bimodal fashion in the first 10 hr after transplantation of 107 cells and then declines rapidly during the first few days of growth. The second (and larger) of the two ornithine decarboxylase increases coincides with the surge of cells from G2-M into S phase, suggesting that this enzyme, or the polyamines that it synthesizes, may play a role in controlling the growth fraction of this cell population.

INTRODUCTION

During tumor growth, the cells pass from a period of exponential (or quasiexponential) growth through a poorly defined transition period into plateau phase. During this process the cell cycle sometimes lengthens, at least in ascites tumors (24), and the proportion of cells in the proliferative cell cycle (the growth fraction) often decreases as cells accumulate in G2-M (15, 17, 24). Although the extent of this accumulation can be manipulated by altering diets (1) or oxygen tension (30) or by transplanting a portion of the tumor (15), the factors that control cellular traffic into and out of the proliferative cycle in a growing tumor are poorly understood.

To study the mechanisms involved in control of the growth fraction, we used ascites tumors, to which both cytokinetic and biochemical techniques are easily applied. In this report we extend our earlier studies (1, 15–17) to the roles of energy supply, endogenous growth inhibitors (chalones), and specific proteins. Although the results are not definitive, they implicate protein synthesis, particularly ornithine decarboxylase synthesis, as a significant factor in growth fraction control.

MATERIALS AND METHODS

Tumor. A hyperdiploid Ehrlich ascites tumor, obtained from Dr. H. van den Brenk (Cancer Institute, Melbourne, Australia) in 1967 and carried in 8- to 12-week-old female Swiss-Webster mice (Charles River Breeding Laboratories, Wilmington, Mass.) by weekly i.p. inoculation of 107 cells, was used in all experiments. In some cases, cell-free ascites fluid was also obtained from plateau-phase P388 lymphocytic leukemia tumors growing in DBA/2 mice (The Jackson Laboratory, Bar Harbor, Maine) (17).

Biochemical Assays. ATP was extracted with cold 6% perchloric acid, brought to pH 7.5 with K2CO3, and assayed with hexokinase or firefly extract (Sigma Chemical Company, St. Louis, Mo.) (3). To collect ascites cells without exposing them to oxygen, the skin was resected, the peritoneum was punctured with a Pasteur pipet, and cells were collected and pipetted immediately into cold 6% perchloric acid. Exogenous ATP (Sigma Chemical Company) was added to 1 extract as a positive control, and results were corrected for loss of ATP during extraction. Other samples of ascites fluid were diluted for cell counting in a Model B Coulter counter.

Soluble proteins were analyzed by polyacrylamide gel electrophoresis (9) using a Canalco Model 1200 apparatus (Canal Industrial Corporation, Rockville, Md.). Twenty minutes after i.p. injection of labeled amino acid (New England Nuclear, Boston, Mass.), ascites tumor cells were collected, washed 3 times with cold 0.8% NaCl solution, and resuspended at 2 x 107/ml in cold distilled water. The washed cells were homogenized for 3 min with a motor-driven ground-glass homogenizer, and a concentrated solution of sucrose and salts was then added to yield a final concentration of 0.25 M KCl, 0.01 M MgCl2, and 0.05 M Tris (pH 7.6). This mixture was centrifuged at 10,000 x g for 10 min, and...
the supernatant was then centrifuged for another 90 min at 105,000 × g and then analyzed for protein (26). Two hundred μg of protein were applied to each polyacrylamide gel (63 × 7 mm) and subjected to electrophoresis at 4° for 130 min (4 mA/gel). Some gels were stained with Coomassie blue and destained with 7% acetic acid, and others were sliced into 2-mm pieces for counting. Each slice was placed in a scintillation vial and dissolved overnight in 0.5 ml of 0.1% SDS. Six ml of Aquasol were then added, and the vials were counted in a Packard Tri-Carb scintillation counter.

LDH activity was measured in twice-washed cells resuspended in 0.8% NaCl solution (25°) at 5 × 10⁶/ml and treated sonically for 30 sec. Kornberg’s spectrophotometric assay (23) was used, with several dilutions of each sample. LDH isozymes were separated on polyacrylamide gels by the method of Dietz et al. (11); all 5 of the LDH isozymes present in homogenates of mouse kidney could be resolved by this technique.

ODC was assayed by a modification of the method of Pegg and Williams-Ashman (27), using an organic base to trap the released 14CO₂. Cells were washed twice and resuspended at 0.5 to 4 × 10⁶/ml in 0.05 m phosphate buffer (pH 7.2) containing 0.1 mM EDTA. The suspension was subjected to 6 cycles of freezing and thawing and then centrifuged at 10,000 × g for 30 min. ODC was assayed in a reaction mixture consisting of 0.5 ml of the 10,000 × g supernatant, 0.1 μmole of pyridoxal phosphate, and 0.2 μmole of DL-[1-14C]ornithine monohydrochloride (2.7 mCi/mmole) in a total volume of 2 ml. Neither mercaptoethanol nor diethiothreitol was included in the reaction mixture, because preliminary experiments indicated that these agents did not alter the result and because diethiothreitol interferes with protein determinations. The assay was run with buffer blanks, because these gave the same result as blanks consisting of boiled supernatant. After incubation at 37° for 60 min, the reaction was stopped by injecting 0.5 ml of 5 N H₂SO₄ into the reaction flask. The entire polypropylene center well, together with its contents, was placed in a scintillation vial with 8 ml of Aquasol (New England Nuclear) and counted in a Packard Tri-Carb scintillation counter.

RESULTS

The Aerobic-Anaerobic Transition and Cellular ATP

Ascites tumors become hypoxic during growth, as evidenced by differences in radiosensitivity in vivo and in vitro (2) and by oxygen-electrode measurements (10). To determine when the transition from aerobic to anaerobic growth takes place in Ehrlich ascites tumors, we assayed the enzyme LDH, which is known to be elevated in anaerobic mammalian cells (6). The LDH activity of Ehrlich ascites cells increased only slightly during exponential growth (Days 0 to 4) but rose sharply during the transition period between exponential growth and plateau phase (Days 4 to 6) (Chart 1). Enzyme activity remained elevated, at 20.7 units/mg protein, throughout plateau phase. If increased LDH activity reflects anaerobic growth in the Ehrlich ascites cell, as it does in others, this result indicates that the tumor changes from aerobic to anaerobic between late exponential growth and early plateau phase.

Only 1 LDH isozyme was detected in Ehrlich ascites cells harvested on Days 2 and 14. This isozyme corresponded to LDH-5, the MMMM isozyme typical of anaerobic growth (7, 19).

Despite the shift from aerobic to anaerobic growth, cellular ATP content remained constant throughout tumor growth (Chart 1), indicating that plateau-phase Ehrlich ascites cells did not suffer from a deficient energy supply.

Chalones and Tumor Growth Fraction

We investigated the role of chalones in the Ehrlich ascites tumor by performing 2 sets of experiments.

In the 1st set, mice bearing exponentially growing tumors (3 days after inoculation of 10⁷ cells) received 1 or 2 2-ml i.p. injections of either 0.8% NaCl solution or cell-free ascites fluid collected from plateau-phase Ehrlich ascites tumors (13 day) or plateau-phase P388 tumors (7 day). The mice were divided into 2 groups: mice in 1 group were given [³H]thymidine i.p. at various intervals after injection of the tumor and were killed 20 min later for autoradiographic determinations of the [³H]thymidine-labeling index; mice in the other group received a single i.p. injection of Colcemid (1 mg/kg) and were killed 4 hr later for determination of the mitotic index. The results show that ascites fluid from plateau-phase tumors caused the [³H]thymidine index of exponentially growing tumors to decrease by 15 to 20% after 4 hr (Chart 2). However, the injection of 0.8% NaCl solution caused an identical effect, as did fluid from P388 ascites tumors. The mitotic index, on the other hand, showed no change 4 hr after injection of ascites fluid [control, 12.7% (range, 10.2 to 16.0%); ascites fluid, 12.8% (range, 10.0 to 16.3%)].

In the 2nd set of experiments, we examined the effect of plateau-phase ascites fluid on the recycling of G₁-G₂ cells...
into S phase after transplantation of 10^7 plateau-phase cells into new mice. When transplantation was followed by i.p. injection of 2 ml of cell-free ascites fluid from 14-day tumors and a 2nd injection of the same fluid 5 hr later, the rise of the [^3H]thymidine index was delayed slightly (Chart 3a). This effect was not limited to Ehrlich ascites fluid, however. Ascites fluid from plateau-phase P388 tumors gave an identical result, and inflammatory exudate collected from normal mice 3 to 4 days after i.p. implantation of small sponges was even more effective (Chart 3a). Increasing the number of injections of Ehrlich fluid from 1 to 5 caused a somewhat longer delay (Chart 3b), but this, too, was duplicated by P388 ascites fluid (data not shown).

Synthesis of Soluble Proteins during Growth. The progressive decrease in the growth fraction of Ehrlich tumors is accompanied by a decreasing rate of protein synthesis (15). To test the possibility that plateau-phase cells accumulate in G_1-G_2 because they are unable to synthesize proteins essential for DNA synthesis, we harvested Ehrlich cells from early plateau-phase tumors (Day 6) and incubated them for various periods in amino acid-free medium at 37°C before transplanting them into new hosts. This treatment increased the time required for the [^3H]thymidine index to rise to half-maximum, 1 hr of lag being induced for every 30 min of incubation (Chart 4). Cells incubated in medium containing amino acids did not show this effect, and omission of glucose did not cause it.

We next examined the synthesis of specific soluble proteins in young and old tumors, following the protocol used by Frindel et al. (14). Two hundred μCi of [^3H]leucine (New England Nuclear; > 98% radiochemical purity) were injected i.p. into exponentially growing (4-day-old) and plateau-phase (11-day-old) Ehrlich ascites tumors, and the cells were collected 20 min later. After being washed at least 3 times with 0.8% NaCl solution, the cells were homogenized and prepared for electrophoresis (14). The results (Chart 5a) confirmed the observation of Frindel et al. (14) that 2 peaks of radioactivity appear in gels prepared from 4- and 11-day-old tumors, the older tumors containing more radioactivity than the younger in the mid-gel peak. However, when we added [^3H]leucine to a 105,000 x g supernatant from unlabeled cells and subjected this material to electrophoresis, radioactivity appeared in 2 peaks identical to those observed with "labeled" cells (Chart 5a). Moreover, [^3H]leucine put on the gel alone (without protein) ran to the same position. Identical results were obtained with [^3H]leucine purchased from other suppliers and with [^3H]valine (data not shown). Other workers have reported similar results (13).

When a 105,000 x g supernatant was prepared from [^3H]leucine-labeled cells and treated with Sephadex G-200 to remove free amino acids before electrophoresis, there

[^3H]Thymidine-labeling index of Ehrlich ascites cells in the hours after transplantation of 10^7 cells from 14-day-old plateau-phase tumors. A, effects of ascites fluid from plateau-phase Ehrlich tumors (○), ascites fluid from plateau-phase P388 tumors (Δ), inflammatory exudate fluid (△), and 0.8% NaCl solution (●). Two ml of each fluid were injected i.p. immediately after transplantation and again 5 hr later. B, effects of a single injection of ascites fluid (2 ml at 0 hr) (O——O), multiple injections of ascites fluid (2 ml each at 0 and 5 hr, 1 ml each at 6, 7, and 8 hr) (O—O), and 0.8% NaCl solution (●).

Factors Controlling Tumor Growth Fraction
were no discrete peaks of radioactivity in the mid-gel region and no differences between young and old tumors. Taken together, these results indicate that the "soluble protein" described by Frindel et al. (14) was free leucine rather than leucine-labeled protein. That old tumors contained more of this material than young ones (Chart 5a) (14) is probably explained by the fact that old tumors synthesize protein more slowly than young ones (15), thereby leaving more \(^{3}H\)leucine in the intracellular pool to be extracted into the soluble protein fraction.

We then repeated the experiment using \(^{3}H\)phenylalanine as the tracer, compensating for the lower rate of protein synthesis in old tumors by injecting them with 4 times the amount of labeled precursor used for young tumors. Phenylalanine alone ran as a single peak, and the gel patterns from young and old tumors injected with this precursor were essentially identical (Chart 5b), as were those in the water-insoluble, SDS-soluble proteins (data not shown). SDS-polyacrylamide electrophoresis (12) of the precipitate from unlabeled cells.

SDS-polyacrylamide gel electrophoresis was performed as described in "Materials and Methods." ---, 4-day-old cells; ----, 11-day-old cells;, \(^{3}H\)leucine (0.3 µCi) added to the supernatant from unlabeled cells. Each fraction was 2 mm; gels were run at 40 mA/gel for 130 min. B, distribution of \(^{3}H\)phenylalanine. In this experiment, the decreased rate of protein synthesis by old tumors was partially compensated for by injecting 100 µCi of \(^{3}H\)phenylalanine into 4-day-old tumors and 400 µCi into 11-day-old tumors; the counts obtained are presented on separate scales to permit direct comparison of the distributions of radioactivity in young and old tumor cells. ---, 4-day-old tumors; ----, 11-day-old tumors;, \(^{3}H\)phenylalanine added to the supernatant from unlabeled cells.

ODC Activity during Growth. The activity of the polyamine-synthesizing enzyme ODC changed dramatically during growth of the Ehrlich tumor (Chart 6). The enzyme was barely detectable in late plateau-phase tumors, but transplanted of 10⁷ cells from these tumors into new mice was followed by a rapid and large increase in ODC activity within hours (Chart 6). By 2 hr after transplantation, ODC had increased several-fold, and a peak occurred at 5 hr, just before the \(^{3}H\)thymidine index began to rise. By 8 hr, ODC activity had fallen by a factor of 2 but then rose a 2nd time, just before the peak at 5 hr varied between 12.8 and 20.4 cpm of \(^{14}C\)CO₂ released per µg of protein per hr of incubation, the average activity at 8 hr was 58% of the 5-hr value, and the average activity at 12 hr was 297% of the 5-hr value.

\(-\bigstar\), ODC activity; \(\bigstar\), \(^{3}H\)thymidine-labeling index.

Chart 4. A, effect of in vitro incubation on the \(^{3}H\)thymidine-labeling index of transplanted Ehrlich ascites tumors. Cells were collected from 6-day-old tumors (early plateau phase), washed, resuspended in Eisen's medium containing 0.2 mM Hepes buffer (pH 7.3), and either kept on ice or incubated at 37°C with gentle rocking for various times before transplantation. \(\bullet\), control, 0° for 150 min; O, 37° for 30 min; A, 37° for 75 min; Δ, 37° for 150 min. B, relationship between incubation time and lag phase after transplantation. The points were obtained by taking the time required for the labeling curves to reach half-maximum and subtracting the control value.

Chart 5. Distribution of radioactivity in polyacrylamide gels prepared from a 105,000 x g supernatant of Ehrlich ascites tumor cells labeled for 20 min in vivo. A, distribution of \(^{3}H\)leucine. Isotope (200 µCi in 0.2 ml) was injected i.p. and polyacrylamide gel electrophoresis was performed as described in "Materials and Methods." ---, 4-day-old cells; ----, 11-day-old cells;, \(^{3}H\)leucine (0.3 µCi) added to the supernatant from unlabeled cells. Each fraction was 2 mm; gels were run at 40 mA/gel for 130 min. B, distribution of \(^{3}H\)phenylalanine. In this experiment, the decreased rate of protein synthesis by old tumors was partially compensated for by injecting 100 µCi of \(^{3}H\)phenylalanine into 4-day-old tumors and 400 µCi into 11-day-old tumors; the counts obtained are presented on separate scales to permit direct comparison of the distributions of radioactivity in young and old tumor cells. ---, 4-day-old tumors; ----, 11-day-old tumors;, \(^{3}H\)phenylalanine added to the supernatant from unlabeled cells.

Chart 6. ODC activity and \(^{3}H\)thymidine-labeling index of plateau-phase Ehrlich ascites tumor cells collected at various times during growth in vivo after i.p. inoculation of 10⁷ plateau-phase (14-day-old) cells. Cells from 2 to 4 mice were pooled for each assay, and all determinations were done in duplicate. The ODC curve represents data from a single experiment; similar results were obtained in repeat experiments, in which the peak at 5 hr varied between 12.8 and 20.4 cpm of \(^{14}C\)CO₂ released per µg of protein per hr of incubation, the average activity at 8 hr was 58% of the 5-hr value, and the average activity at 12 hr was 297% of the 5-hr value.

\(-\bigstar\), ODC activity; \(\bigstar\), \(^{3}H\)thymidine-labeling index.
beginning at 9 to 10 hr. This 2nd increase paralleled the increase in the $[^{3}H]thymidine$ index and reached its maximum at 12 hr, when the $[^{3}H]thymidine$ index also peaked (Chart 6). ODC activity then decreased exponentially over the next 4.5 days, with a half-time of 7 hr, whereas the $[^{3}H]thymidine$ index plateaued for approximately 1 S phase and then fell also.

DISCUSSION

Many factors may act to prevent mammalian cells from moving into S phase from G_{1}-G_{0} (21). In the complex situation of a tumor growing in vivo, it is exceedingly difficult to discover which microenvironmental factors (e.g., deprivation of critical nutrients, decreased oxygen tension, or the presence of growth-inhibiting substances) are responsible for decreasing the growth fraction, and it is even more difficult to determine the biochemical mechanisms by which such factors act. As a result, one is often limited to inferences drawn from the temporal relationships between biochemical and cytokinetic events. Although this limitation applies to this study, several conclusions seem warranted.

First, it is clear that the Ehrlich tumor does not suffer a gross deficit of ATP during growth, even though it changes from aerobic to anaerobic between the 4th and 6th days (Chart 1). Since the $[^{3}H]thymidine$-labeling index declines linearly over virtually the entire period of growth (15), there is no clear relationship between ATP supply and the growth fraction.

Second, in contrast to the results obtained by Bichel (4, 5) with other tumors, ascites fluid from plateau-phase Ehrlich tumors does not contain a specific chalone capable of depressing the growth fraction. Although injection of ascites fluid into exponentially growing or freshly transplanted tumors did change the $[^{3}H]thymidine$-labeling index, other proteinaceous fluids, and indeed sometimes a 0.8% NaCl solution alone, had identical effects (Charts 2 and 3). The report that ascites fluid chalones must be activated by adrenalin and hydrocortisone to be effective (8) does not seem relevant to our experiments, because we have no reason to believe that our animals were deficient in these substances.

Third, and most important, our data suggest that changes in protein synthesis may play a role in regulating tumor growth fractions. Although young and old Ehrlich tumors had the same amounts of electrophoretically identifiable soluble proteins (Chart 5), the regulating enzyme ODC varied markedly with tumor age, increasing in a bimodal fashion in the hours after transplantation and then declining to a very low level in the days after the 2nd peak (Chart 6). The increased ODC activity shortly after transplantation is consistent with the observation that a variety of G_{0} cells synthesize ODC soon after they are stimulated to enter the proliferative cell cycle (18, 20, 22, 28), although a causal relationship between increased ODC and increased growth fraction has not been formally established in any of these cases. Indeed, in the Ehrlich tumor, it is possible that the 2nd rise in ODC activity may reflect, rather than cause, the movement of cells into S phase. Russell and Stambrook (29) reported recently that synchronized Chinese hamster V79 cells contain much higher ODC levels in S phase than in G_{1}, and if this is also true for Ehrlich cells, the temporal coincidence between the 2nd ODC increase and the increased $[^{3}H]thymidine$ index (Chart 6) may be trivial rather than causal.

Perhaps of more immediate interest is the 1st ODC increase, which occurred well in advance of the increase in the $[^{3}H]thymidine$ index (Chart 6). If this increase has a causal relationship to recycling, the most likely link between the two would be the synthesis of the polyamines, putrescine, spermine, and spermidine. Several reports suggest a relationship between polyamine synthesis (or content) and DNA synthesis, the most recent being plateau-phase WI38 cells that are stimulated to reenter the proliferative cell cycle by fresh medium (18). In this model (and others), putrescine synthesis follows closely behind an initial increase in ODC activity. The implication is that this polyamine somehow "turns on" or stabilizes the metabolic events that lead to DNA synthesis. Because we have observed a peak in putrescine content in transplanted Ehrlich tumors approximately coincident with the 1st ODC peak and just before increased DNA synthesis (C. R. Kehe, unpublished data), our working hypothesis is that this polyamine may represent an important control mechanism for growth fraction control in this system. Although this is the most reasonable hypothesis, other possibilities exist [for example, synthesis of specific "G_{1} proteins," which may be required before a cell can move from G_{1} into S (25)], and further work is required to determine its validity.

ACKNOWLEDGMENTS

We thank Dr. N. S. Ling for helping with the G-200 column analysis and the molecular weight determinations, and I. Ewing for technical assistance.

REFERENCES

The Role of Adenosine Triphosphate, Chalones, and Specific Proteins in Controlling Tumor Growth Fraction

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/35/11/3181

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.