Contents

Asterisks preceding page numbers refer to human studies.

1387 Mark L. Rosenblum, Kenneth T. Wheeler, Charles B. Wilson, Marvin Barker, and Kathy D. Knebel. In Vitro Evaluation of In Vivo Brain Tumor Chemotherapy with 1,3-Bis(2-chloroethyl)-1-nitrosourea.

1402 Gunnar Ronquist and Gunnar K. Agren. A Mg2+-and Ca2+-stimulated Adenosine Triphosphatase at the Outer Surface of Ehrlich Ascites Tumor Cells.

1407 Vic Raso and Ronnye Schreiber. A Rapid and Specific Radioimmunoassay for Methotrexate.

1411 Lionel A. Poirier, Gary D. Stoner, and Michael B. Shimkin. Bioassay of Alkyl Halides and Nucleotide Base Analogs by Pulmonary Tumor Response in Strain A Mice.

1416 John D. Scribner and Norma K. Naimy. Adducts between the Carcinogen 2-Acetamidophenanthrene and Adenine and Guanine of DNA.

*1422 Richard A. Gams, John Webb, and Jerry D. Glucksen. Serum Inhibition of In Vitro \(^9\)Ga Binding by L1210 Leukemic Cells.

1445 Paul E. Zeldin, P. K. Bhattacharya, H. Kubinski, and W. C. Niedert. Macromolecular Complexes Produced by 1,3-Propanesultone.

*1453 Catherine Fenselau, Man-Na N. Kan, Stephen Billets, and Michael Colvin. Identification of Phosphorodiamidic Acid Mustard as a Human Metabolite of Cyclophosphamide.

1458 Frederick E. Evans and Ramaswamy H. Sarma. The Aqueous Solution Conformation of Tubercidin and Tubercidin 5'-Phosphate.

1464 Kenneth T. Wheeler, Nifer Tel, Mary E. Williams, Sandra Sheppard, Victor A. Levin, and Pokar M. Kabra. Factors Influencing the Survival of Rat Brain Tumor Cells after In Vitro Treatment with 1,3-Bis(2-chloroethyl)-1-nitrosourea.

1470 Yeou-Jan Kang, Mark O. J. Olson, Christopher Jones, and Harris Busch. Nucleolar Phosphoproteins of Normal Rat Liver and Novikoff Hepatoma Ascites Cells.

Jilly Davis and Ray K. Ralph. Regulation of Growth of Mouse Mastocytoma Cells.

Elliot Alpert. Characterization and Subunit Analysis of Ferritin Isolated from Normal and Malignant Human Liver.

Frederick F. Becker, Allan A. Horland, Alan Shurgin, and Stewart Sell. A Study of α-Fetoprotein Levels during Exposure to 3'-Methyl-4-dimethylaminoazobenzene and Its Analogs.

Melvin S. Rheins, Joyce A. Filppi, and Victor S. Moore. Effect of Iodoacetate on the Bone Marrow Immunocompetence of AKR Mice.

S. V. Khadapkar, N. A. Sheth, and S. V. Bhide. Independence of Sialic Acid Levels in Normal and Malignant Growth.

Bożena Chłopkiewicz and Jadwiga Koziorowska. Role of Amino Acid Depletion in Combined Treatment of Neoplastic Cells with Methotrexate and L-Asparaginase.

G. Gordon Steel and Kay Adams. Stem-Cell Survival and Tumor Control in the Lewis Lung Carcinoma.

Christer O. Wernstedt, Gunnar K. Ågren, and Gunnar Ronquist. Enzyme Activities at the Surface of Intact Ehrlich Tumor Cells with Albumin in the Isotonic Assay Medium.

Nobuko S. Mizuno, Baiba Zakis, and Richard W. Decker. Binding of Daunomycin to DNA and the Inhibition of RNA and DNA Synthesis.

William Plunkett and Seymour S. Cohen. Two Approaches that Increase the Activity of Analogs of Adenine Nucleosides in Animal Cells.

Mark Edelstein, Teresa Vietti, and Fred Valeriote. The Enhanced Cytotoxicity of Combinations of 1-β-d-Arabinofuranosylcytosine and Methotrexate.

Leo J. Grady and Wayne P. Campbell. Transcription of the Repetitive DNA Sequences in Polyoma-transformed and Nontransformed Mouse Cells in Culture.

Ann R. Kennedy and John B. Little. Localization of Polycyclic Hydrocarbon Carcinogens in the Lung following Intratracheal Instillation in Gelatin Solution.

Mary F. Argus, Georgia M. Bryant, Karen M. Pastor, and Joseph C. Arcos. Effect of Polychlorinated Biphenyls (Aroclor 1254) on Inducible and Repressible Microsomal N-Demethylases in the Mouse and Rat.

Norman Weliky, Donald H. Leaman, Jr., and Burton J. Kallman. Stability and Dissociation of P3HR-1 Burkitt’s Lymphoma Cell Soluble Complement-fixing Antigen Identified with Human Serum.

R. Michael Williams, Martin E. Dorf, and Baruj Benacerraf. H-2-linked Genetic Control of Resistance to Histocompatible Tumors.

Announcements.

COVER LEGEND

Discovery of RNA-directed DNA polymerase, or reverse transcriptase, was an important advance in the molecular biology of oncogenic viruses. The discovery was reported simultaneously in 1970, by David Baltimore (Nature, 226: 1209—1211, 1970) and Howard M. Temin and Satoshi Mizutani (Nature, 226: 1211—1213, 1970). The work was conducted with Rous sarcoma and Rauscher murine leukemia viruses. It helped to elucidate the mechanism by which RNA viruses can convert their genetic information into DNA, and it suggested that information in biological systems can flow into as well as out of DNA.

David Baltimore (upper left) was born in New York in 1938 and received his doctorate from the Rockefeller University, New York, in 1964. He has been with the Massachusetts Institute of Technology, Cambridge, Mass., since 1968, as Professor of Biology.

Howard M. Temin (upper right) was born in Philadelphia in 1934 and received his doctorate at the California Institute of Technology in 1959. He has been with the University of Wisconsin’s McArdle Laboratory since 1960, now as Professor of Oncology. Satoshi Mizutani (lower) was born in Yokohama in 1937 and received his doctorate in microbiology at the University of Kansas. He was on a Fulbright scholarship while Temin’s coworker, and he continues at the University of Wisconsin as assistant scientist.

In 1974 Baltimore and Temin were elected to memberships in the National Academy of Sciences. Both also hold American Cancer Society Research Fellowships.

M.B.S.

Updated version Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/35/6.citation

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/35/6.citation.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.