Kinetics of Both Leukemic and Normal Cell Population Reduction following 5-Azacytidine

Cary A. Presant, Teresa Vietti, and Fred Valeriote

INTRODUCTION

5-Azacytidine (AzaCR) is a pyrimidine analog that has shown marked antineoplastic activity in experimental tumor systems (14, 19) and has demonstrated clinical antileukemic efficacy (5, 10, 15, 20). Following phosphorylation, AzaCR is incorporated into both DNA and RNA, and inhibits DNA, RNA, and protein synthesis (7, 16, 21). Studies at the cellular level have indicated that AzaCR is a cell cycle-specific agent (9) with its predominant cytotoxic effect against cells in S phase (8). AzaCR also blocks cells in their progression from G1 into S at relatively low drug concentrations (16).

Since the kinetics of killing of leukemic cells by AzaCR has been evaluated only in vitro (8, 9), this study was initiated to examine the kinetics of reduction of leukemic and normal cells in vivo by AzaCR. Our results suggest that AzaCR cytotoxicity in vivo is unusual. The kinetics of AzaCR killing differs from that expected for either phase-specific or phase nonspecific agents, and the repopulation of leukemic cells is dose dependent, being markedly delayed at high drug doses.

MATERIALS AND METHODS

L1210 Leukemia. The L1210 leukemia model was used as previously described (3). Two- to 3-month-old DBA/2J mice (The Jackson Laboratory, Bar Harbor, Maine) were transplanted weekly with 4 × 10⁴ L1210 leukemia cells, and a monodispersed cell suspension was prepared 7 days later from the spleens of these mice. Two million nucleated cells in 0.5 ml were injected i.v. into recipient 6- to 8-week-old BALB/c × DBA/2F1 (hereafter called CD2F1) mice (National Cancer Institute) weighing 20 to 25 g (0.006 sq m). Four days later these leukemic mice were used in the experiments described herein.

AzaCR. AzaCR was obtained from the Drug Development Branch of the National Cancer Institute. It was dissolved and diluted in distilled water immediately prior to use and administered i.v. in a volume of 0.5 ml.

Assays for LCFU and NCFU. LCFU were enumerated using the spleen colony assay (1). Femoral marrow was obtained from groups of 4 leukemic CD2F1 mice. Five-tenths ml of an appropriately diluted monodispersed suspension (sufficient to give 2 to 4 colonies/spleen) was then injected i.v. into 8 recipient CD2F1 mice. The spleens were removed 8 days later, and macroscopic colonies were counted. The average number of colonies per spleen and the marrow dilution were used to estimate the number of LCFU present in the femoral marrow of the donors. The fractional survival of LCFU was determined by normalizing all results to an untreated control group assayed at either 4 or 5 days following leukemic cell injection, depending on the experimental study.

The assay for NCFU differed from that for LCFU in that the femoral marrow was obtained from 5 noneukemic CD2F1 mice, and the 10 recipients received 900 rads of whole-body γ-radiation, as previously described (18), prior to the injection of a dilution of the normal femoral marrow.
Macrosopic colonies in the spleen were counted 10 days after injection. The average number of colonies per spleen and the marrow dilution were used to estimate the number of NCFU present in the femoral marrow of the donors. The fractional survival of NCFU following treatment was determined by normalizing the results to an untreated control group.

RESULTS

Dose Dependence of LCFU and NCFU Survival. Mice were given different doses of AzaCR, and the survival of LCFU and NCFU was measured 24 hr later. As shown in Chart 1, survival of both LCFU and NCFU decreased with increasing dose. The curves fitted to the data for the 2 cell populations were biphasic, with the initial slopes being steeper than the terminal slopes. Even for a dose of 0.01 mg/mouse, LCFU survival was significantly decreased (0.32). At a dose of 0.1 mg/mouse, NCFU survival was not different from the control, while LCFU survival had decreased to about 6×10^{-8}. At doses in excess of 0.5 mg/mouse, LCFU were more sensitive than NCFU by a factor of 100 or more.

Time Dependence of LCFU and NCFU Survival. Mice were given either 0.1 mg or 1 mg of AzaCR per mouse, and LCFU survival was measured at various time intervals thereafter (Chart 2). At the low dose, LCFU survival reached a minimum of about 8×10^{-2} at 8 to 12 hr after drug administration, following which repopulation of femoral marrow by LCFU was observed. After the high dose of AzaCR, a minimum surviving fraction of LCFU of 5×10^{-8} was reached by 12 hr, but repopulation had not commenced by 6 days after AzaCR injection. Mice receiving the high dose of AzaCR appeared not to be dying from leukemia but rather from drug toxicity, as expanded upon below in “AzaCR Toxicity.”

A more accurate determination of the dose at which the transition occurred between prompt LCFU repopulation (as with 0.1 mg/mouse) and prolonged depression of LCFU content (as with 1.0 mg/mouse) was attempted. Leukemic mice received different doses of AzaCR, and the surviving fraction of LCFU was determined 1, 2, and 4 days later. LCFU survival increased over the observed period if the AzaCR dose was 0.1, 0.125, 0.15, or 0.2 mg/mouse. At 0.25, 0.3, 0.5, and 1.0 mg/mouse, significant repopulation had not occurred by Day 4.

Experiments were performed to determine whether this delay in repopulation occurred for NCFU as well. Each nonleukemic mouse was given 1.0 mg AzaCR, and survival of NCFU was measured. The minimum survival level (about 8×10^{-8}) was reached by Day 2 and repopulation commenced thereafter (Chart 3). By Day 7, NCFU survival was 0.6 of the pretreatment level.

Survival Studies. Survival of leukemic mice following AzaCR administration should be proportional either to the decrease in LCFU, as occurs with all other agents studied against this tumor system, or to the decrease in LCFU plus an amount of time reflecting the delay in repopulation of LCFU. This factor was examined in mice that had received 10^8 leukemic cells i.v. and 2 days later received varying doses of AzaCR; survival was followed daily. Untreated leukemic mice survived 7 or 8 days. It was previously determined from the rate of leukemic proliferation that a 90% decrease in the number of LCFU should prolong survival by 1.1 days or yield a 15% ILS in this system (unpublished data). The predicted and observed values are shown in Chart 4 where ILS is plotted as a function of drug dose. After 0.1 mg AzaCR per mouse, the reduction of LCFU previously found (Chart 1) predicts an ILS of 22%.
C. A. Presant et al.

administration as an infusion would modify the extent of killing of LCFU. Mice were immobilized in a plastic chamber with free access to food, their tails were taped to tongue depressors, and 26-gauge needles were secured i.v. Twenty-four-hr infusions of AzaCR in 0.9% NaCl solution were administered and, 4 hr after the conclusion of the infusion, LCFU survival was assayed (Chart 5). There was no difference in survival of LCFU at doses up to 1 mg/mouse, compared with that found for single bolus injections (Chart 1). At doses above 1 mg/mouse, however, the acute injection produced a significantly greater decrease in LCFU than the infusion.

Drug Stability Studies. AzaCR was diluted in distilled water and stored at 4°. This solution was used for dose-survival studies (as in Chart 1) after various time intervals. The results are shown in Chart 6. For up to 2 weeks after preparation, little, if any, decrease in activity was observed. By 4 weeks, cytotoxic activity had decreased by approximately 50%.

AzaCR Toxicity. Groups of 10 normal CD2F1 mice received different doses of AzaCR, and survival was measured at 30 days. Results of 5 separate experiments indicated that the LD₅₀ was approximately 3 mg/mouse.

Drug toxicity seemed to be increased in leukemic mice, since 80% of mice receiving AzaCR, 0.5 or 1 mg/mouse (4 days after receipt of 2 × 10⁶ leukemic cells), died between 6 and 8 days after drug injection, seemingly not from leukemia. Blood counts, films of peripheral blood, and bone marrow films were performed on these mice on Days 1, 2, 4, and 7, and these tests indicated the onset of profound pancytopenia 4 days after AzaCR injection. By 7 days after AzaCR treatment, white blood cell counts decreased to below 1,500/cu mm, platelet counts decreased to below

![Chart 3. Fractional survival of NCFU as a function of time after administration of 1 mg of AzaCR per mouse. Different symbols represent different experiments. Vertical bars, ± 1 S.E.](image1)

![Chart 4. Percentage ILS of leukeinic mice treated with AzaCR. The time at which 50% of the mice had died was determined to the nearest 0.5 day by interpolation. The experimental results (■) represent the mean of 1 to 3 experiments, each consisting of 10 mice. Mice receiving no AzaCR survived 7 or 8 days; ○, ILS predicted from the decrease in LCFU alone, as determined from Chart 1.](image2)

in close agreement with the 24% ILS observed. For 0.5 mg and higher doses, disparities existed between the predicted and observed survival times. For example, the LCFU reduction observed after 1 mg AzaCR/mouse (Chart 1) would predict a 47% ILS, whereas 130% ILS was observed, a value more than 6 days beyond that predicted. Thus, the delayed repopulation of LCFU as measured by the spleen colony assay is reflected in the survival time assay.

Effect of Repeated Doses or Infusion of AzaCR. We next determined whether an optimum time interval existed for split doses of AzaCR. Leukemic mice received 0.1 mg/mouse of AzaCR and a 2nd 0.1-mg dose at either 4, 8, 12, 16, or 24 hr thereafter. The survival of LCFU was compared with that found for a single injection of 0.2 mg AzaCR alone (1.8 × 10⁻³). The fractional survival for the 2 doses of 0.1 mg varied between 1.3 and 2.8 × 10⁻¹ and is thus not significantly different from that for the single 0.2-mg dose.

We next attempted to determine whether drug adminis-
There was no increase in numbers of peripheral blood lymphoblasts at this time, indicating again the absence of leukemic proliferation. Deaths between Days 4 and 7 were compared with the fractional survival of NCFU in leukemic mice, fractional NCFU survival was 2.7×10^{-2} while, in normal mice, it was 0.25. Thus, the survival of NCFU in leukemic mice was 11% that of normal mice 5 days after AzaCR treatment.

DISCUSSION

Optimal chemotherapy requires knowledge of a number of factors relating to drug, tumor, and host. One such factor is the in vivo kinetics of tumor cell kill by clinically efficacious agents such as AzaCR.

In vitro studies have suggested that AzaCR is a cell cycle-specific agent which kills L1210 cells predominantly in S phase (7, 8, 16). However, the biphasic dose-survival curve obtained for both LCFU and NCFU (Chart 1) is inconsistent with simple phase-specific cytotoxicity, since the more sensitive population seems to represent about 99% of the LCFU population. It is possible that, at low doses, AzaCR is S-phase specific, but at higher doses, its cytotoxicity becomes phase nonspecific, similar to that previously described for actinomycin D (18). In fact, the data of Li et al. (8) indicate cytotoxic effects in G_1, G_2, and M at a high drug concentration. A lack of phase specificity of AzaCR at higher doses is not surprising, since AzaCR not only inhibits DNA synthesis but also inhibits RNA and protein synthesis (7, 16), disrupts polyribosomes (2, 6), and produces a defective AzaCR-containing RNA (4).

Our time-survival studies indicate that survival of LCFU reaches a minimum 8 to 12 hr after AzaCR administration, which is consistent with the in vitro data of Lloyd et al. (9). However, repopulation was markedly dependent on the dose of AzaCR. At doses less than 0.2 mg/mouse, LCFU repopulation promptly occurred. At higher doses, little if any repopulation was apparent, a phenomenon unique to AzaCR. The phenomenon is not an artifact of the assay method, since white blood cell and differential counts of peripheral blood confirm the lack of progressive leukemic cell accumulation. In addition, survival was appropriately prolonged. The explanation for this phenomenon is not likely to be simple prolongation of generation time, since that would predict slower repopulation, which was not seen (Chart 2), as well as smaller spleen colonies, which were not observed. Persistent biological availability of AzaCR or an active metabolite is possible and might explain a lack of full NCFU repopulation after 14 days (Chart 3). An interesting, although presently unexplainable finding is that the dose at which the slope changed in the dose-survival curve of LCFU (Chart 1) corresponds to the dose at which the transition occurred between early repopulation and prolonged depression of femoral marrow LCFU found in the time-survival studies. Further studies to clarify the mechanism responsible for the prolonged depression of LCFU content are in progress.

This prolonged depression of LCFU content could produce spurious conclusions from mouse survival studies. It has been observed that cells surviving treatment with certain drugs proliferate at the same rate as before therapy, so that prolongation in survival is proportional to the number of cells killed (13). However, if repopulation is delayed for some period of time (as with AzaCR), then survival time would be prolonged in proportion to the length of time repopulation is delayed, even though there has been no additional killing of tumor cells. It is possible that this factor accounts for some of the observed prolongation in survival time of mice harboring L1210 leukemia treated with AzaCR in certain schedules (17, 19).

At low doses of AzaCR, equal cytotoxicity was observed, regardless of whether the drug was given as a single dose, split doses, or an infusion. Only with high doses in excess of 1 mg/mouse was a decreased cytotoxic effect of the infusion observed. This is consistent with the lack of significant schedule dependency demonstrated in survival time assays by Venditti (19). The decreased cytotoxic effect of infusion of high doses could be related to instability of the drug at room temperature.
It is significant that, despite the reported chemical instability of AzaCR in solution (9, 11), full cytotoxicity against LCFU was retained for 2 weeks with only a slight loss in effectiveness at 4 weeks. Although this cytotoxicity to LCFU may be due to metabolites, it indicates that infusions of AzaCR could be given without loss of therapeutic potential. The possibility of altered toxicity against NCFU or other tissues has not been studied.

The reduced NCFU survival in AzaCR-treated leukemic mice compared with AzaCR-treated nonleukemic mice is unexplained, but is consistent with the profound pancytopenia in leukemic mice 4 days after treatment with a high dose of AzaCR. It is possible that NCFU in leukemic mice are more sensitive to AzaCR due to an altered proliferative state, or it is possible that L1210 leukemia cells release an inhibitor of NCFU repopulation.

Therapeutically, the dose dependency of kinetics of AzaCR cytotoxicity suggests that the efficacy of regimens containing AzaCR may be dependent on whether high or low doses are used. At low doses of AzaCR, S-phase-specific cell kill might occur. The interaction of AzaCR at such doses, with other drugs, could be expected to differ from that at higher doses where phase-independent cell kill and delayed tumor repopulation are likely to occur.

ACKNOWLEDGMENTS

We gratefully acknowledge the technical assistance of Kathy Atwood.

REFERENCES

Kinetics of Both Leukemic and Normal Cell Population
Reduction following 5-Azacytidine

Cary A. Presant, Teresa Vietti and Fred Valeriote

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/35/8/1926

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.