Suppressive Role of Indole on 2-Acetylaminofluorene Hepatotoxicity¹

Martin L. Hopp,² Michio Matsumoto, Benjamin Wendell, Chung Lee, and Ryoichi Oyasu

Departments of Pathology [M. L. H., M. M., B. W., R. O.] and Urology [C. L.], Northwestern University Medical School, Chicago, Illinois 60611

SUMMARY

Indole is known to suppress the hepatotoxicity and carcinogenicity of 2-acetylaminofluorene (AAF) in rats and hamsters. For elucidation of the mechanism of its protective role, 2 experiments were conducted using young male rats. In the 1st experiment, the 24-hr biliary excretion of N-hydroxy-2-acetylaminofluorene (N-OH-AAF)-glucuronide was measured after 2 and 4 weeks of dietary administration of 0.03% AAF with or without 1.6% indole. The amount of [9-¹⁴C]N-OH-AAF that was excreted as the glucuronide following a single i.p. injection of [9-¹⁴C]AAF was lower after 2 weeks in animals fed AAF and indole, as compared to those fed AAF alone [1.5 ± 1.2% versus 19.6 ± 3.6% S.E. (p < 0.001)]. After 4 weeks of AAF administration without indole, the biliary excretion fell to 4.8 ± 2.1%. This was also significantly higher than that of the animals fed both AAF and indole [1.8 ± 1.2% (p < 0.025)]. The suppressive role of indole on the conjugate excretion was also reflected in a decreased biliary excretion of all [9-¹⁴C]AAF metabolites in animals treated with indole alone.

In the 2nd experiment, the protective action of indole was assessed by survival following daily i.p. injections of N-OH-AAF and Na₂SO₄ solution. Na₂SO₄ increased the hepatotoxicity of N-OH-AAF. Indole suppressed the toxicity of N-OH-AAF even in the presence of Na₂SO₄. This protective role of indole was partially overcome only when excess sulfate was coadministered. These results indicate that indole suppresses the biliary excretion of the O-glucuronide of N-OH-AAF during the initial exposure of the animal to the carcinogen, possibly reflecting decreased N-OH-AAF formation. Indole also modifies the metabolism of AAF following N-hydroxylation, perhaps activating N-OH-AAF, depending upon the concentration of sulfate available.

INTRODUCTION

Indole has been repeatedly shown to play a role in decreasing the hepatotoxicity and hepatocarcinogenicity of AAF² in rats and hamsters (13, 15, 16). In an experiment on the effect of indole on the AAF hepatotoxicity and carcinogenicity in hamsters, cholangiofibrosis, a nonmalignant proliferative glandular lesion with productive fibrosis, was observed in all 26 animals treated with AAF alone, while only 7 of 27 animals treated with AAF and indole developed this lesion (13). In addition, none of the AAF- and the indole-treated animals developed cholangiocarcinoma, as did 4 of the AAF-treated animals.

It has been shown that AAF requires biochemical activation in the liver, in the form of hydroxylation of the nitrogen-yielding N-OH-AAF (2, 11). This derivative is more carcinogenic than the parent compound in sensitive species, and is active at the site of the injection (5, 12, 18). It is also active in species in which the parent compound is inactive (9). The ability of liver to N-hydroxylate AAF can be assessed in vitro (1, 8) and in vivo (8) by measuring the production of the O-glucuronide of N-OH-AAF, the major metabolite of N-OH-AAF in the rat liver (6). Irving et al. (6) have shown that rats, a species susceptible to hepatotoxicity and carcinogenicity by AAF, excrete a high percentage of a test dose as N-OGI-AAF on bile. In rabbits, a species resistant to AAF, the biliary excretion of N-OGI-AAF was much less.

Subsequent studies strongly indicate that N-OH-AAF must undergo further activation in order to manifest its hepatocarcinogenicity. At least one of these ultimate carcinogenic forms leading to liver cancer in rats has been shown to be the sulfate ester of N-OH-AAF (3, 17). This view was supported by increased hepatotoxicity and carcinogenicity of N-OH-AAF in the presence of acetylated and excess dietary sulfate (4, 17). It was shown that susceptible species exhibit higher sulfotransferase activity than nonsusceptible species (3, 7). Indole has been shown to decrease [9-¹⁴C]N-OH-AAF binding to DNA, while increasing the binding to microsomal protein (9).

Our present studies were undertaken to investigate the protective role of indole and its relation to alterations of the metabolism of AAF in vivo. In the 1st experiment, the biliary excretion of conjugated N-OH-AAF was measured following a short period of dietary carcinogen treatment with or without indole. In the 2nd experiment, the effect of indole on N-OH-AAF toxicity was assessed.

MATERIALS AND METHODS

Chemicals

Anhydrous granular sodium sulfate, reagent grade, was purchased from J. T. Baker Chemical Co., Phillipsburg, N. J., and AAF was from Aldrich Chemical Co., Milwaukee, Wis. N-OH-AAF was obtained as a gift from Dr. Harry B. Wood, Jr., Drug Research and Development Branch, Na-
gen absorption. The animals were restrained by twine in 24 hr to maintain adequate hydration and ensure cancino the test dose. The test dose was injected within 2 hr after 0.9% NaCl solution, and 10 ml of 5% dextrose to ensure ether. The ether fraction was dried and the residue was extracted 2 times with an equal volume of ethyl.

Animals

Young male albino CD rats weighing 150 to 250 g were purchased from Charles River Breeding Laboratory, Wilmington, Mass.

Procedures

Experiment A. The animals were divided into 4 dietary groups, 0.03% AAF, 0.03% AAF plus 1.6% indole, 1.6% indole, and synthetic diet without additives. They had free access to diet and water. Those animals treated with indole-containing diets were fed an 0.8% indole diet for 3 days, in order that they would be adjusted to eating an indole diet upon commencement of the experiment. After 2 and 4 weeks of dietary treatment the bile duct was cannulated, using polyethylene tubing (PE-10, Clay-Adams, Parsippany, N. J.) during ether anesthesia. A catheter (PE-205) was placed in the peritoneal cavity to facilitate the injection of the test dose. The test dose was injected within 2 hr after surgery. The [9-14C]AAF was first dissolved in 95% ethanol (100 μCi/0.2 ml) and then suspended in water to make the total volume 10 ml. Each animal was given an injection of 2 ml 0.9% NaCl solution to prepare the abdominal cavity, followed by the test dose of 15 animals. Animals were housed 3/cage and given water and synthetic diet ad libitum. Dietary consumption was not measured. The indole groups were first treated with 0.3% indole diet for 3 days as in Experiment A. Two series of experiments were made. 4 In both, a large amount of N-OH-AAF (50 mg/kg body weight) was administered i.p. For Part 1, each animal received daily i.p. injections according to Table 1. Each animal received 2 injections daily, 2 hr apart. The experiment was terminated after 2 weeks by killing the surviving animals.

Analysis of Biliary [9-14C]N-OH-AAF. A 2-ml portion of bile adjusted to pH 6 by adding 10 ml of 1 M sodium acetate buffer was digested with 10 mg of β-glucuronidase (Sigma Chemical Co., St. Louis, Mo.) for 3 hr at 37°. The mixture was then extracted 2 times with an equal volume of ethyl ether. The ether fraction was dried and the residue was dissolved in 7 ml of 0.5 N NaOH and washed 2 times with 20 ml of ethyl ether. The water phase was quickly acidified to pH 6 with 0.5 N HCl and extracted 2 times with ethyl ether.

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>N-OH-AAF</th>
<th>Na2SO4</th>
<th>Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>-</td>
<td>Indole</td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>+</td>
<td>Indole</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>+</td>
<td>Normal</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>+</td>
<td>Normal</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>+</td>
<td>Indole</td>
</tr>
</tbody>
</table>

The ether extract was dried and metabolites were separated by silica gel thin-layer chromatography. N-OH-AAF appears on silica gel plate as a spot distinct from other AAF metabolites as described previously (13). The N-OH-AAF spot was located under UV and scraped into a counting vial. To this were added 10 ml of scintillation fluid which consisted of 5.5 g PPO, 0.1 g POPOP, 333 ml Triton X-100, and 667 ml toluene. The radioactivity was measured by a Packard Model 3085 liquid scintillation spectrometer (Packard Instrument Co., Downers Grove, Ill.). An internal standardization procedure was used, with 14C toluene as the marker, to determine the efficiency of the counting for each sample. Results were expressed as dpm. With each test a 2-ml portion of normal bile, to which were added 3.9 μg of [9-14C]N-OH-AAF, was analyzed to determine the efficiency of each analysis group. The results were expressed based on each group-recovery efficiency. The urine collected was analyzed by our previously described thin-layer chromatography method (14).

Experiment B. Young male albino CD rats weighing 150 to 200 g were divided into 6 groups, each group consisting of 15 animals. Animals were housed 3/cage and given water and synthetic diet ad libitum. Dietary consumption was not measured. The indole groups were first treated with 0.3% indole diet for 3 days as in Experiment A. Two series of experiments were made. 4 In both, a large amount of N-OH-AAF (50 mg/kg body weight) was administered i.p. For Part 1, each animal received daily i.p. injections according to Table 1. Each animal received 2 injections daily, 2 hr apart. The experiment was terminated after 2 weeks by killing the surviving animals.

In Part 1, the N-OH-AAF was dissolved in 95% ethanol (250 mg/0.75 ml) and then diluted to 10 mg/ml by adding 1% gum...
acacia and also 1 M Na₂SO₄ when appropriate.

For Part 2 of this experiment, the N-OH-AAF was dissolved in ethanol (200 mg/0.75 ml) and then diluted to 5 mg/ml by adding 1% gum acacia, including 1 M Na₂SO₄ when appropriate. The rats were treated identically to those in Part 1, except that the amount of Na₂SO₄ was increased as shown in Table 2.

In both parts of Experiment B, all animals were weighed daily. An autopsy was performed on all animals as early as possible following death. Routine microscopic examination was limited to the liver and other organs that appeared grossly abnormal.

RESULTS

Experiment A.

Following the administration of [9-¹⁴C]AAF, the mean volume of bile produced in all groups over a 24-hr period was 17.9 ml. Those animals that produced less than 10 ml of bile were considered moribund and were not included in the study. No group had an excessive number of such animals.

Analysis of the bile containing exogenously added [9-¹⁴C]-N-OGI-AAF without β-glucuronidase demonstrated that less than 0.1% of the radioactivity was recovered as N-OH-AAF. The bile constituents from animals treated with indole did not alter the analysis efficiency, which ranged from 30 to 50% for each analysis procedure.

As shown in Table 3, 19.6 ± 3.6% (S. E.) of the test dose of [9-¹⁴C]AAF was excreted in the bile as the glucuronide of N-OH-AAF in those animals treated for 2 weeks with 0.03% AAF diet. When indole was added to the diet for 2 weeks the biliary excretion of N-OGI-AAF was significantly decreased to 1.5 ± 1.2% of the test dose (unpaired t test; p < 0.001). When treated with AAF alone for 4 weeks, the animals did not excrete as well as those at 2 weeks (4.8 ± 2.1%). However, the biliary conjugate excretion of N-OH-AAF was still significantly more than that of the animals fed AAF and indole diet for 4 weeks (1.8 ± 1.0%; p < 0.025). Untreated animals excreted 3.1 ± 2.8% of the test dose, while the rats fed a normal diet with indole added and not carcinogen. These animals excreted 22.3 ± 5.4% of the radioactivity in the bile, while the rats fed a normal diet excreted 63.0 ± 6.5% of the test dose (p < 0.01). While both the normal and the 2-week AAF treatment groups excreted approximately 63% of the test dose in the bile, in the AAF group approximately 32% of these excreted biliary metabolites were N-OGI-AAF, while the 5.4% were in the N-hydroxylated form in the normal rats. This selective enhancement of N-OH-AAF biliary excretion by dietary AAF administration was blocked when the AAF diet was fortified with 1.6% indole (4.7%). After 4 weeks of treatment, the AAF group still excreted more radioactivity as N-OGI-AAF (16.0%) than did the AAF-indole group (6.2%), despite the fact that the total biliary radioactivity in the former dropped to the same level as that of the combination-diet group, probably due to hepatotoxicity of AAF (Table 5).

After 4 weeks of treatment, no difference could be demonstrated in the urinary radioactivity as well as total radioactivity in the bile and urine excreted between the groups (AAF, AAF + indole). The inhibiting effect of indole was demonstrated in animals fed a normal diet with indole added and not carcinogen. These animals excreted 22.3 ± 5.4% of the radioactivity in the bile, while the rats fed a normal diet excreted 63.0 ± 6.5% of the test dose (p < 0.01). While both the normal and the 2-week AAF treatment groups excreted approximately 63% of the test dose in the bile, in the AAF group approximately 32% of these excreted biliary metabolites were N-OGI-AAF, while the 5.4% were in the N-hydroxylated form in the normal rats. This selective enhancement of N-OH-AAF biliary excretion by dietary AAF administration was blocked when the AAF diet was fortified with 1.6% indole (4.7%). After 4 weeks of treatment, the AAF group still excreted more radioactivity as N-OGI-AAF (16.0%) than did the AAF-indole group (6.2%), despite the fact that the total biliary radioactivity in the former dropped to the same level as that of the combination-diet group, probably due to hepatotoxicity of AAF (Table 5).

After 4 weeks of treatment, no difference could be demonstrated in the urinary radioactivity as well as total radioactivity in the bile and urine excreted between the groups (AAF, AAF + indole). The inhibiting effect of indole was demonstrated in animals fed a normal diet with indole added and not carcinogen. These animals excreted 22.3 ± 5.4% of the radioactivity in the bile, while the rats fed a normal diet excreted 63.0 ± 6.5% of the test dose (p < 0.01). While both the normal and the 2-week AAF treatment groups excreted approximately 63% of the test dose in the bile, in the AAF group approximately 32% of these excreted biliary metabolites were N-OGI-AAF, while the 5.4% were in the N-hydroxylated form in the normal rats. This selective enhancement of N-OH-AAF biliary excretion by dietary AAF administration was blocked when the AAF diet was fortified with 1.6% indole (4.7%). After 4 weeks of treatment, the AAF group still excreted more radioactivity as N-OGI-AAF (16.0%) than did the AAF-indole group (6.2%), despite the fact that the total biliary radioactivity in the former dropped to the same level as that of the combination-diet group, probably due to hepatotoxicity of AAF (Table 5).
Suppressive Role of Indole on AAF Hepatotoxicity

Table 4
Total radioactivity excreted in 24-hr collection period
Following specific dietary treatment, a bile duct cannula was made as described, and all bile and urine were collected for 24 hr at 0°.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% of test dose excreted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bile</td>
</tr>
<tr>
<td>2 wk</td>
<td></td>
</tr>
<tr>
<td>AAF</td>
<td>62.4 ± 9.4*</td>
</tr>
<tr>
<td>AAF + Indole</td>
<td>33.4 ± 12.5</td>
</tr>
<tr>
<td>4 wk</td>
<td></td>
</tr>
<tr>
<td>AAF</td>
<td>33.1 ± 15.7</td>
</tr>
<tr>
<td>AAF + Indole</td>
<td>30.7 ± 5.1</td>
</tr>
<tr>
<td>None</td>
<td>63.0 ± 6.5</td>
</tr>
<tr>
<td>2 wk</td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>22.3 ± 5.4</td>
</tr>
<tr>
<td>4 wk</td>
<td></td>
</tr>
<tr>
<td>Indole</td>
<td>24.5 ± 3</td>
</tr>
</tbody>
</table>

* Mean ± S.E.

Table 5
Biliary metabolites in the form of [9-14C]N-OGI-AAF
Bile collected over 24 hr was analyzed for [9-14C]N-OGI-AAF. This metabolite made up only part of the metabolites excreted after an i.p. test dose of [9-14C]AAF.

<table>
<thead>
<tr>
<th>% of bile</th>
<th>2 wk</th>
<th>4 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>AAF</td>
<td>32.0</td>
<td>16.0</td>
</tr>
<tr>
<td>AAF + indole</td>
<td>4.7</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Experiment B

Part 1. As shown in Chart 1, the toxicity of N-OH-AAF was well demonstrated by mortality in Group A (N-OH-AAF). Addition of Na₂SO₄ to the injection solution apparently increased the toxic effect of N-OH-AAF, as was shown by the accelerated mortality of animals in Group E. All animals in this group were dead by Day 11, with toxicity demonstrated by Day 3. The survival rates of these 2 groups (A and E) were significantly different by covariant analysis ($p < 0.01$). The presence of indole in the diet (Groups B and C) protected the animals. The administration of sulfate in these indole-treated animals (Group B) did not restore the toxicity of N-OH-AAF.

Part 2. The survival rate for these animals is shown in Chart 2. The toxicity of N-OH-AAF, as shown by Group A', was greatly enhanced by the large amount of Na₂SO₄, given concurrently in Group E'. In the presence of indole, the toxicity of N-OH-AAF was decreased (Group B', N-OH-AAF and indole). This protective effect of indole could be only partially overcome with excessive sulfate added to the injection (Group C', N-OH-AAF, indole, and Na₂SO₄). However, this toxicity, shown by Group C', could not approach that of animals treated with N-OH-AAF alone (Group A').

Microscopic examination of the liver revealed hemorrhagic necrosis involving the periportal parenchyma. The involvement was most pronounced in the groups of animals treated with N-OH-AAF with or without Na₂SO₄. Dietary indole clearly protected the liver and the periportal changes were minimal. No peritonitis was detected in any animals.

DISCUSSION

From the present investigation 2 findings emerged: (a) dietary indole suppressed the biliary excretion of N-OGI-AAF, the major rat liver metabolite of N-OH-AAF; (b) indole suppressed the hepatotoxicity of N-OH-AAF, with this action only partially overcome by an excessive amount of sulfate.

In animals treated for 2 weeks with AAF diet, the biliary excretion of N-OGI-AAF was 19.6% of the test dose. The presence of indole in the AAF diet suppressed this biliary excretion to 1.5%, reflecting a significant difference in handling of the AAF (Table 4). Although less striking, the biliary excretion of conjugated N-OH-AAF at 4 weeks was still higher in the AAF group than the AAF-indole group ($p < 0.025$).

The urinary excretion of radioactivity remained relatively constant, regardless of the type of treatment. This suggests that dietary addition of indole may result in slower metabolism and longer retention of the carcinogen for a longer time in the body. The mechanism involved is not clear; however, it might affect glucuronide conjugation, thereby delaying excretion.

It has been clearly demonstrated that animals fed the AAF diet will develop malignant hepatic tumors in high incidence, while those fed indole concurrently will show a low incidence (12, 15, 16). Although increased biliary excretion of N-OH-AAF observed during the 1st 4 weeks in the animals treated with AAF alone does not necessarily mean more long-term active synthesis of N-OH-AAF, this is a distinct
Chart 1. Animals were given daily injections (Table 1). Survival data were collected according to the number of animals alive for the 1st injection each day.

Chart 2. In Group E', one rat died shortly after the 1st injection from undetermined cause. Animals were injected daily (Table 2). Survival data were collected according to the number of animals alive for the first injection each day.
possibility. This may increase the initial incidence of, or susceptibility of animals to, malignant transformations, resulting in a high incidence of hepatic cancers.

The presence of excess sulfate has previously been shown to enhance N-OH-AAF hepatotoxicity and carcinogenicity while being treated with dietary acetanilide (4, 17). The difference in mortality rates demonstrated in Experiment B may indicate that indole plays an inhibitory role in the activation step beyond N-hydroxylation of AAF. The mechanisms involved are unknown, however. A possible inhibitory role of indole is that of depletion of the sulfate ions required for the final activation step. This is the mechanism offered by Weisburger et al. (17) to explain the inhibitory role of p-hydroxyacetanilide on N-OH-AAF hepatocarcinogenesis. In Experiment B, Part 1, treatment with dietary indole completely dominated over the effect of added sulfate. In Experiment B, Part 2, the amount of sulfate injected was increased, in order for it to be in excess of the amount of indole ingested by each animal. Indole again greatly decreased the mortality of the animals treated with N-OH-AAF and normal diet. However, now the protective role of indole could be partially overcome when this excess sulfate was available. There may be a competition between indole and N-OH-AAF for sulfate ions, or possibly a competition for enzyme usage. Since indole is normally excreted in the urine as the potassium salt of indoxyl sulfate (indican), the metabolism of indole could alter the sulfonation and thus the activation of N-OH-AAF.

ACKNOWLEDGMENTS

We wish to thank Dr. Charles King and Dr. Ray Cardona for consultation in the development of our analytical procedures.

REFERENCES

Errata

The following change should be made in the article, entitled "Suppressive Role of Indole on 2-Acetylaminofluorene Hepatotoxicity," by M. L. Hopp et al., published in the January 1976 issue of CANCER RESEARCH. On page 234, the final sentence of the Summary should read: "Indole also modifies the metabolism of AAF following N-hydroxylation, perhaps effecting the activation of N-OH-AAF depending upon the concentration of sulfate available."

APPLIED CLINICAL IMMUNOLOGY: METHODS, APPLICATIONS, INTERPRETATIONS

The University of Texas Health Science Center at Houston, in cooperation with Baylor College of Medicine and the University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, will present a two and one-half day course in Applied Clinical Immunology: Methods, Applications, and Interpretations on May 20 and 21, 1976, at the Texas Medical Center, Houston, Texas. Optional laboratory workshops will be given on May 22, 1976. The course is designed to present current methods and approaches used in clinical medicine to the practicing physician and the laboratory scientist. Discussion of radioimmunoassays, cell-mediated tests, antibody determinations, and certain methods for assessing nonspecific immune function will be included. For further information, contact the Office of the Director, The University of Texas Health Science Center, Division of Continuing Education, P. O. Box 20367, Houston, Texas 77025.

The editors regret the necessity of calling the readership's attention to an error in the March 1976 cover legend. Dr. Louis-Charles Simard is pictured in the lower portrait, and Dr. Antonio Cantero is pictured in the upper portrait.
Suppressive Role of Indole on 2-Acetylaminofluorene Hepatotoxicity

Martin L. Hopp, Michio Matsumoto, Benjamin Wendell, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/36/1/234

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.