Inhibitory Effect of *Capsella bursa-pastoris* Extract on Growth of Ehrlich Solid Tumor in Mice

Keiko Kuroda, Mitsutaro Akao, Masayoshi Kanisawa, and Komei Miyaki

Research Institute for Chemobiodynamics, Chiba University, Izumi-cho, Narashino, Chiba 275, Japan

SUMMARY

The treatment of ICR mice with i.p. injections (0.14 g/kg/day) of the extract of *Capsella bursa-pastoris* herb (Cruciferae) caused 50 to 80% inhibition of the solid growth of Ehrlich tumor cells that had been inoculated into the s.c. tissue of the animals. The tumor lumps in the treated mice showed multifocal necroses and the infiltration of host fibrous tissue cells. Experiments were also performed to isolate and identify the active component for the antitumor action, and an acidic substance was isolated in crystalline form from the herb extract. This acidic substance was identified as fumanic acid and was effective in inhibiting the growth of Ehrlich solid tumor at a dose of 10 mg/kg/day. The 50% lethal dose (i.p.) of this acid was 266 mg/kg.

INTRODUCTION

CBP (Cruciferae) has been eaten and used medicinally in China and Japan for many centuries, and our previous studies indicated that the extract of this herb has various kinds of pharmacological activities, such as diuretic, antiinflammatory, antiulcer, and oxytocic (2-5). It was also found that the administration of the herb extract inhibited the induction of hepatomas in the rats fed 3'-methyl-4-dimethylaminoazobenzene (1). In the present study, we found that the herb extract inhibits the growth of Ehrlich solid tumor inoculated into the s.c. tissue of mice. Then, experiments were carried out to isolate and identify the active component of the herb extract that is responsible for the antitumor action.

MATERIALS AND METHODS

The herb CBP which had been harvested in spring and dried in the shade was treated with boiling 95% ethanol under a reflux condenser for 24 hr. The contents of the flask were filtered, and the filtrate was concentrated in a rotary evaporator. The residue was used as CBP extract for the study on Ehrlich tumor growth in mice.

Animals used were male ICR mice obtained from Nippon Rat Co., Saitama, Japan. The basal diet for feeding animals was a semisynthetic diet, CE-2 (6), obtained from CLEA Inc., Tokyo, Japan. Mice, 5 to 7 weeks of age, were inoculated with 2 × 10^6 Ehrlich cells into the s.c. tissue of the left inguinal region of the animals. From the 4th day after the inoculation, mice were given i.p. injections of a suspension of CBP extract in 0.5% carboxymethylcellulose:0.9% NaCl solution at the dose of 0.14 g/kg/day for 25 days. Then mice were killed and the lumps of the solid tumor were taken out and weighed. The weights of tumor lumps were compared to those from the control animals, which had been given only the vehicle, and also to those from the positive control animals, which had been given the suspension of 6-mercaptopurine, a potent antitumor agent, 12 mg/kg/day in the vehicle. 6-Mercaptopurine was obtained from Kojin Co., Ltd., Tokyo, Japan. The tumor samples for microscopic examination were fixed in 10% formaldehyde solution, embedded in paraffin, and stained with hematoxylin and eosin.

Isolation of the active component from the herb extract was carried out using antitumor activity as a guide. The dried herb was treated with boiling 70% ethanol under a reflux condenser for 24 hr. The contents of the flask were filtered, and the filtrate was concentrated in a rotary evaporator. The tarry brown residue was dried under sulfuric acid and nmnhydnmn reagents as indicators) were extracted with 1/9 strong acidic (pH 3 to 4). To this aqueous solution 1990 volume of 10 n sulfuric acid was added, then 2 volumes of ethyl ether were added in a separatory funnel, and the mixture was shaken mechanically. This extraction with ethyl ether was repeated 3 times. Acidic substances free of amino acids (as shown on paper chromatography using bromocresol green and ninhydrine reagents as indicators) were extracted. The ether solution thus obtained was filtered, and the filtrate was concentrated. The concentrate was dissolved in water (1:50, v/v), and the aqueous solution was filtered. The aqueous solution was strongly acidic (pH 3 to 4). To this aqueous solution 1990 volume of 10 n sulfuric acid was added, then 2 volumes of ethyl ether were added in a separatory funnel, and the mixture was shaken mechanically. This extraction with ethyl ether was repeated 3 times. Acidic substances free of amino acids (as shown on paper chromatography using bromocresol green and ninhydrine reagents as indicators) were extracted. The ether solution thus obtained was filtered, and the filtrate was concentrated. The concentrate was dissolved in water (1:50, v/v), and the aqueous solution was filtered. The aqueous solution was strongly acidic (pH 3 to 4). To this aqueous solution 1990 volume of 10 n sulfuric acid was added, then 2 volumes of ethyl ether were added in a separatory funnel, and the mixture was shaken mechanically. This extraction with ethyl ether was repeated 3 times. Acidic substances free of amino acids (as shown on paper chromatography using bromocresol green and ninhydrine reagents as indicators) were extracted. The ether solution thus obtained was filtered, and the filtrate was concentrated. The concentrate was dissolved in water (1:50, v/v), and the aqueous solution was filtered.

Received February 9, 1973; accepted February 5, 1976.

1 This study was supported by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education.

2 The abbreviations used are: CBP, *Capsella bursa-pastoris*; IR, infrared; NMR, nuclear magnetic resonance.
yllic acids with regard to paper chromatography, melting point, IR, NMR and mass spectra, and elementary analysis. In paper chromatography, the filter paper used was Toyo No. 50, obtained from Toyo Roshi Co., Ltd., Tokyo, Japan, and the solvents used were butyl alcohol:CH₂O₂:H₂O (10:2:15, v/v/v) and ethanol:NH₄OH:H₂O (80:5:15, v/v/v). Authentic carboxylic acids were obtained from Wako Pure Chemical Industries, Ltd., Tokyo. IR, NMR, and mass spectra were recorded by Nihon Bunko IR-G IR spectrophotometer, Hitachi Perkin-Elmer 60-MHz NMR spectrophotometer, and Hitachi double-focus RMU-6E mass spectrophotometer, respectively.

RESULTS

Table 1 shows the results of 2 separate experiments on the effect of CBP extract on the solid growth of Ehrlich tumor cells inoculated in mice. The i.p. injections of CBP extract at the dose of 0.14 g/kg/day retarded the growth of Ehrlich solid tumor. The weights of tumor lumps in the mice treated with CBP extract were smaller than those in the control mice treated with the vehicle. 6-Mercaptopurine, a potent antitumor agent, was used as a positive control. Histologically, the Ehrlich tumor cells inoculated into control mice formed a conglomerated mass and sometimes infiltrated into the muscle fibers of the animals, showing a number of mitotic figures (Figs. 1 and 2). In the animals treated with CBP extract, the tumor masses were small in size and were surrounded thickly with the fibrous tissues. Small and focal necroses were scattered throughout the tumor lumps and were accompanied by the infiltration of fibrous tissues. Mitotic figures were rarely observed (Figs. 3 and 4).

The crystalline substance, isolated in the attempt to identify the component responsible for the antitumor activity, showed the same Rf values as those of authentic fumaric acid in paper chromatography, 0.88 and 0.30 in the development with the solvents butyl alcohol:CH₂O₂:H₂O (10:2:15) and ethanol:NH₄OH:H₂O (80:5:15), respectively. The melting point of the crystalline substance, 285–287°, was almost identical to that of authentic fumaric acid, 286–287°. The physical and chemical data of the substance were as follows: IR (KBr)/cm, 1660, 1425, 1320, 1275, 1234, 1010, 900. NMR in dimethyl sulfoxide-d₆ δ ppm from tetramethylsilane, 6.65 (2H, singlet); mass spectrum m/e, 116 (M⁺). Elementary analysis was as follows:

\[C_{6}H_{8}O_{4} \]

Calculated: C 41.39, H 3.47
Found: C 41.66, H 3.52

These data completely coincided with those of authentic fumaric acid, and the crystalline substance was identified as fumaric acid. Table 2 shows the effect of fumaric acid, from either the herb extract or the commercial source, on the growth of Ehrlich solid tumor in mice. The experimental procedures and schedule were similar to those of the experiment with CBP extract except that fumaric acid was dissolved in 0.9% NaCl solution, i.e., without addition of carboxymethylcellulose to the vehicle, and was given to mice at the dose of 40 mg/kg/day. It was shown that fumaric acid from either the herb extract or the commercial source had a similar inhibitory effect on the growth of Ehrlich solid tumor. The dose-response study indicated that the growth of Ehrlich solid tumor was retarded by the administration of fumaric acid, even at the dose of 10 mg/kg/day (Table 3). A toxicity study was also made. A single large dose was lethal to mice and the 50% lethal dose (i.p.) was 266 (303 to 233) mg/kg, calculated by the method of Litchfield-Wilcoxon.

DISCUSSION

The growth of Ehrlich tumor inoculated into mice was clearly suppressed by i.p. injections of CBP extract. The mode of action of CBP extract seems to be different from that of 6-MP, 6-mercaptopurine.

Table 1

<table>
<thead>
<tr>
<th>Group of mice</th>
<th>Body wt (g)</th>
<th>Tumor wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>44.1 ± 6.1</td>
<td>13.5 ± 7.8</td>
</tr>
<tr>
<td>CBP-treated</td>
<td>42.5 ± 5.2</td>
<td>3.0 ± 3.1*</td>
</tr>
<tr>
<td>6-MP*-treated</td>
<td>43.4 ± 5.1</td>
<td>2.2 ± 1.6*</td>
</tr>
<tr>
<td>Control</td>
<td>44.1 ± 3.6</td>
<td>14.4 ± 3.9</td>
</tr>
<tr>
<td>CBP-treated</td>
<td>36.5 ± 3.5</td>
<td>6.4 ± 1.5*</td>
</tr>
<tr>
<td>6-MP*-treated</td>
<td>41.3 ± 4.1</td>
<td>4.3 ± 3.2*</td>
</tr>
</tbody>
</table>

* 0.14 g/kg/day for 25 days given i.p.
* p < 0.01
* 6-MP, 6-mercaptopurine.
* 12 mg/kg/day for 25 days given i.p.

Table 2

<table>
<thead>
<tr>
<th>Group of mice</th>
<th>Body wt (g)</th>
<th>Tumor wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>37.8 ± 5.1</td>
<td>10.9 ± 4.8</td>
</tr>
<tr>
<td>Fumaric acid</td>
<td>38.4 ± 3.9</td>
<td>4.4 ± 2.4*</td>
</tr>
<tr>
<td>Authentic fumaric acid</td>
<td>41.0 ± 4.6</td>
<td>3.9 ± 2.2*</td>
</tr>
</tbody>
</table>

* 40 mg/kg/day for 25 days given i.p.
* p < 0.01

Table 3

<table>
<thead>
<tr>
<th>Dose of fumaric acid (mg/kg)</th>
<th>Body wt (g)</th>
<th>Tumor wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Control)</td>
<td>40.0 ± 3.1</td>
<td>8.6 ± 3.5</td>
</tr>
<tr>
<td>2.5</td>
<td>40.8 ± 3.6</td>
<td>9.2 ± 3.0</td>
</tr>
<tr>
<td>5</td>
<td>40.0 ± 2.6</td>
<td>6.1 ± 3.6</td>
</tr>
<tr>
<td>10</td>
<td>43.5 ± 2.5</td>
<td>5.8 ± 1.6*</td>
</tr>
<tr>
<td>20</td>
<td>38.0 ± 3.0</td>
<td>3.4 ± 1.8*</td>
</tr>
<tr>
<td>40</td>
<td>38.7 ± 2.3</td>
<td>2.6 ± 1.6*</td>
</tr>
</tbody>
</table>

* Given i.p. for 25 days.
* p < 0.01.
K. Kuroda et al.

cytotoxicity on tumor cells, for the tumor cells remaining in
the CBP extract-treated mice showed neither marked de-
genenerative alterations, such as those seen after treatment
with X-ray irradiation, nor any indication that the necrosis of
the tumor lump was centering around the small arteries. In a
culture system, the presence of CBP extract in the medium
had no effect on the viability of Ehrlich tumor cells or on the
incorporation of [14C]leucine, [4-14C]UTP, and [6-3H]-
thymidine into the macromolecules. The characteristic
histological features of the tumor lumps remaining in the
mice treated with CBP extract were the presence of irregu-
lar and multifocal necrosis and the infiltration of fairly fine
fibrous tissue. The tumor lumps were sometimes demar-
cated from the host tissues by the fibrocapsule. In the
control mice, the tumor cells exhibited infiltrative growth
into the muscle layer with a number of mitotic figures, and
the necrosis was seen in the center of the tumor nodule.
Following the antitumor activity in the fractionation of the
herb extract, fumaric acid was isolated in crystalline form.
Fumaric acid did have antitumor activity similar to that of
CBP extract. The dose-response study indicated that fu-
maric acid exhibited antitumor activity at a dose of 10 mg/
kg/day, which is comparable to the dose of 6-mercaptopu-
rine, a well-known, potent antitumor agent. Fumaric acid is
an intermediate metabolite in the citric acid cycle and 4-
carbon dicarboxylic acid cycle in respiration, but its phar-
macological activities have not been studied in detail. The
antitumor activity seems to be specific to fumaric acid, for
other related 4-carbon intermediates, i.e., succinic acid,
malic acid, and oxaloacetic acid, showed no significant
effect on the growth of Ehrlich solid tumor. Fumaric acid
also has an antiulcer action, one of the pharmacological
actions of CBP extract (5). It is expected that fumaric acid
plays an important role in the pharmacological activities of
the herb extract (4, 5). The present antitumor activity and
the inhibitory effect of the herb extract on the induction of
hepatoma in rats fed 3'-methyl-4-dimethylaminoazobenzene (1)
would be expected to be exhibited through mediation of its pharmacological effects on the animals. Further
studies to clarify the detailed features along these lines are
in progress.

ACKNOWLEDGMENTS

We are indebted to Professor Tadashi Arai, Department of Antibiotics of
our Institute, for providing the Ehrlich tumor cells.

REFERENCES

1. Kuroda, K., Akao, M., Kanisawa, M., and Miyaki, K. Inhibitory Effect of
Capsella bursa-pastoris on Hepatocarcinogenesis Induced by 3'-Methyl-4-
2. Kuroda, K., and Kaku, T. Pharmacological and Chemical Studies on the
3. Kuroda, K., and Takagi, K. Physiologically Active Substance in Capsella
Pharmacology of Ethanol Extract of the Herb. Arch. Intern. Pharmacody-
5. Kuroda, K., and Takagi, K. Studies on Capsella bursa-pastoris. II. Diuretic,
Anti-Inflammatory and Anti-Ulcer Action of Ethanol Extract of the Herb.
Bacteriostatic Agents in Their Inhibitory Effect on Induction of Hepatoma
Fig. 1. Ehrlich solid tumor in a control mouse. Tumor cells infiltrate into the muscle fibers of the mouse; some of the destroyed muscle fibers are seen in the tumor cells. H & E, × 50.

Fig. 2. A high magnification of Fig. 1. A number of mitotic figures of tumor cells are seen. H & E, × 200.

Fig. 3. Ehrlich solid tumor in a mouse treated with i.p. injections of CBP extract. A massive, multiple, and small focal necrosis and the fibrous tissue proliferation are seen with tumor cells. They give a mottled appearance to the figure. H & E, × 50.

Fig. 4. A high magnification of Fig. 3. H & E, × 200.
Inhibitory Effect of *Capsella bursa-pastoris* Extract on Growth of Ehrlich Solid Tumor in Mice

Keiko Kuroda, Mitsutaro Akao, Masayoshi Kanisawa, et al.

Cancer Res 1976;36:1900-1903.

Updated version

Access the most recent version of this article at:

http://cancerres.aacrjournals.org/content/36/6/1900