Genetics of Colon Carcinogenesis in Mice Treated with 1,2-Dimethylhydrazine

James T. Evans, Thomas B. Shows, Edith E. Sproul, Norman S. Paolini, Arnold Mittelman, and Theodore S. Hauschka

Roswell Park Memorial Institute, Buffalo, New York 14263

SUMMARY

Genetic analysis of colon tumor induction by symmetrical 1,2-dimethylhydrazine (DMH) was undertaken in F1, F2, and reciprocal backcross hybrids derived from a cross between two inbred mouse strains, the 100% susceptible ICR/Ha and completely resistant C57BL/Ha. Mice, 12 to 14 weeks old, received 22 successive weekly s.c. injections of 0.35% aqueous solution of DMH buffered to pH 6.5. A dose of 15 mg/kg/mouse/week produced invasive colon adenocarcinomas in all ICR/Ha males and females (60 of 60) within 22 weeks. None of the 90 C57BL/Ha mice developed DMH tumors during 44 weeks of observation. Susceptibility to the carcinogen was dominant, as indicated by 100% colon tumor incidence in reciprocal ICR/Ha × C57BL/Ha F1 hybrids (68 of 68) and in the susceptible backcross ICR/Ha × F1 (42 of 42). Tumor yield in F2 hybrids (94 of 120) was 78%, which is in close agreement with the 3:1 ratio expected if a single dominant DMH susceptibility gene is inherited via the F1 from the ICR/Ha grandparent. Likewise, tumor yield in resistant backcross mice of genotype C57BL/Ha × F1 (46 of 117) is not out of line with the anticipated 1:1 ratio in the latter type of test hybrids. Tests with five isozyme markers and two coat color genes have tentatively ruled out linkage of DMH susceptibility on seven autosomes. The 47% tumor incidence among 57 male resistant backcross hybrids, regardless of whether their single X chromosome was inherited from the ICR/Ha or C57BL/Ha strain, provides evidence against sex linkage.

INTRODUCTION

Large bowel tumors in rats and mice, induced by DMH, constitute a histological analog of colon cancer in man. Because the human disease is significantly more frequent under the environmental impact of western civilization, animal research has focused on environmental carcinogens. Recent reports consider dietary factors, intestinal flora (9), bile salt metabolites, and other variables in this complex etiological problem.

Experiments along such lines paid little attention to the genetic makeup of the test animals used. However, the familial incidence of certain large bowel tumors in man that involves inheritance of a single dominant autosomal gene (6) warrants a genetic analysis of DMH carcinogenesis in suitable mice. Two inbred strains (one susceptible, the other resistant to DMH) were available for this study. Colon papillomas and adenocarcinomas developed within 22 weeks in 100% of ICR/Ha (hereafter called ICR) mice given s.c. injections of DMH. No tumors of any kind occurred in C57BL/Ha (hereafter called C57BL) mice, given identical treatment during 44 weeks of observation (2, 3).

MATERIALS AND METHODS

Test Hybrids. Reciprocal matings between susceptible ICR and resistant C57BL mice produced F1 hybrids under standardized maintenance and dietary conditions. These F1 hybrids were mated to males and females of both parent strains, yielding susceptible backcross and BCR hybrids. F2 mice were derived from crosses between F1 animals. Our mating scheme is shown in Table 1.

Treatment. At the start of DMH treatment, all mice were 12 to 14 weeks old and weighed from 23 to 27 g. Once a week, for 22 consecutive weeks, they received s.c. injections of 0.35% aqueous solution of DMH buffered with EDTA to pH 6.5. The DMH dose base was 15 mg/kg/mouse. The weekly dose averaged 0.37 mg DMH in 0.2 ml. Follow-up observation was up to 44 weeks, at which time the surviving tumor-free mice were 14 months old.

Pathology. All mice were sacrificed after adequate follow-up periods. Complete autopsies were performed. Tumors of the colon were graded for frequency on a 1+ to 4+ scale (Fig. 1). They were then examined in histological sections (2) cut from formalin-fixed specimens stained with hematoxylin and eosin to determine polyposis, invasiveness, and other features of the DMH-induced bowel lesions.

Linkage Studies. ICR and C57BL mice have electrophoretically distinct isozyme alleles for the enzyme loci Dip-1, Gpd-1, Es-1, Mod-1, and Es-3 mapped on Chromosomes 1, 4, 8, 9, and 11, respectively. Isozyme mobility was determined in homogenates of individual kidneys removed from 9 BCR hybrid mice with DMH-induced colon tumors. Starch gel electrophoresis and specific histochemical staining (10) differentiate between backcross mice homozygous for the C57BL isozyme and heterozygotes that carry both the ICR and C57BL allele of the same enzyme. Coincidence of colon tumors with 1 of the ICR-derived enzyme markers would
Genetics of DMH Colon Carcinogenesis in Mice

RESULTS

Genetics of Colon Tumor Susceptibility. The percentages of colon tumors developing in the parental and hybrid mice are summarized in Table 2. The 100% tumor incidence in the large bowels of F₁ and susceptible backcross hybrids indicates dominance of the ICR-derived susceptibility to DMH carcinogenesis. Findings in the F₂ and BCR hybrids permitting correlation with tumor incidence. Sex linkage of DMH response was evaluated in reciprocal BCR males that carried either the ICR or the C57BL X chromosome.

Colorectal Lesion Patterns. Against the background of the entire ICR genome, this locus appears to maximize DMH metabolism to an active carcinogenic metabolite, promoting the 4+ and 3+ tumor yields shown in Fig. 1. The homogenous F₁ genome contains an equal chromosome contribution from the ICR and C57BL parents. Accordingly, the F₁ colonic lesions are mostly in the 3+ or 2+ category. The broad genetic recombination in the F₂ population is reflected in the wide variation of DMH oncogeny, ranging from 1+ (a few papillomas) to 4+ (multiple invasive adenocarcinomas). Minor modifying genes inherited from the resistant C57BL parent may account for the least severe lesion pattern (below 2+) in the BCR hybrids. Photomicrographs of sections from typical DMH colon tumors were shown in an earlier paper (2).

Linkage Tests. Autosomal linkage of the ICR susceptibility gene was tested by means of 5 enzyme loci: Dip-1 on Chromosome 1; Gdp-1 on 4; Es-1 on 8; Mod-1 on 9; and Es-3 on 11. Our ICR and C57BL mice carry different alleles for 2 coat color genes: albino on Chromosome 7 and agouti on Chromosome 2. If there were linkage with any 1 of these 7 markers, a significant majority of the DMH colon tumors would coincide with heterozygosis for the ICR allelic marker, whereas most of the homozygotes for the corresponding C57BL allele would remain tumor free.

The colon tumor incidence among the A/a agouti-colored F₂ mice (83 ± 4.4%) and the F₂ albinos (77 ± 8.1%) does not differ significantly from the expected 3:1 ratio. Hence, linkage on Autosomes 2 and 7 is excluded.

The enzyme data (Table 3) are based on starch gel elec-
trophoresis of isozyme proteins, performed on homogenates of individual kidneys that were removed from 9 BCR hybrids with DMH-induced colon tumors. Since tumors occurred with about equal frequency in mice homozygous for the C57BL isozymes and in heterozygotes for the ICR alleles (Table 3, Column 4), the dominant DMH response gene does not appear to be linked closely to any of the 5 enzyme markers on Chromosomes 1, 4, 8, 9, or 11.

Tumor yield in 2 groups totaling 57 male BCR mice (Table 2, Line 7) was close to the expected 50%, whether they had inherited their single X chromosome from the DMH-susceptible ICR or from the resistant C57BL strain. This constitutes evidence against sex linkage and permits the conclusion that DMH colon carcinogenesis in the 100% susceptible inbred ICR strain, subline 1 (5), is controlled by a dominant autosomal gene.

DISCUSSION

Familial polyposis of the human colon resembles our ICR/Ha × C57BL/Ha hybrid model in its dominant autosomal mode of inheritance, its progressive pathology, and the specificity of the target tissue (6). Penetration of the large bowel response to remote s.c. DMH treatment is 100% in the F₁ test and 75% in the F₂ test. Full dominance may be overridden by minor modifiers from the C57BL genotype, depending on the genomic frame of reference within which the major DMH-activating gene of ICR origin operates. For example, 50% of our female BCR hybrids were expected to develop colon lesions, but only 32% did; this fits a 2-gene autosomal genotype.

The fact remains that germ-free rats can metabolize DMH to an active carcinogenic derivative. Normal tissues of certain strains of conventional mice should have the same capacity unaided by the microflora. The search for the enzyme system involved in DMH activation will no doubt be accelerated by the considerable chemical knowledge about DMH metabolism (4, 11) and by the apparent single gene control of DMH oncogeny reported here.

REFERENCES

Genetics of Colon Carcinogenesis in Mice Treated with 1,2-Dimethylhydrazine

James T. Evans, Thomas B. Shows, Edith E. Sproul, et al.

Updated version
Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/37/1/134

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.