Transferrin Promotion of 67Ga and 59Fe Uptake by Cultured Mouse Myeloma Cells

Alan W. Harris and Robert G. Sephton

The Walter and Eliza Hall Institute of Medical Research [A. W. H.], and The Cancer Institute [R. G. S.], Melbourne, Australia 3000

SUMMARY

Radiotracer 67Ga-citrate is used as a tumor-seeking agent in clinical imaging investigations although fundamental reasons for its high uptake in certain malignant lesions remain unexplained. The mechanism by which 67Ga becomes concentrated in tumor cells has been investigated by comparing 67Ga and 59Fe uptake by cultured mouse myeloma cells with particular reference to uptake stimulation by transferrin. Concentrations of human transferrin down to 2 μg/ml greatly stimulated cellular uptake of both tracers, whereas bovine transferrin proved relatively inactive. The rates of stimulated uptake of both tracers were similar as was their high degree of retention by cells, but their quantitative dependencies on transferrin concentration showed characteristic differences. Pretreatment of human transferrin with saturating amounts of nonradioactive Fe$^{3+}$ canceled its ability to promote 59Fe uptake, but it had little effect on its promotion of 67Ga uptake. Further increase in the amount of added Fe$^{3+}$ did cause a progressive depression of 67Ga uptake, but this effect probably relates to the iron distribution in the whole-cell culture system including the fetal calf serum component of cell growth medium. The results suggest that 67Ga and 59Fe reveal different aspects of the interaction of transferrin with cells.

INTRODUCTION

Since the discovery of its affinity for tumors (5), 67Ga-citrate has been widely used in clinical nuclear medicine for the detection and location of malignant deposits (11, 12, 17). The general clinical experience has been that distinctive 67Ga accumulation occurs particularly in lymphoid tumors and also in inflammatory lesions, but its mechanism is not understood. It is known that 67Ga becomes firmly bound inside cells, and a predominantly lysosomal location has been reported (3, 16). Its binding to tissue proteins (4, 9) and serum proteins (4, 7, 8) has been studied; transferrin in particular was identified as one of the binding components (4, 7). Experimental studies in vivo have shown a relationship between uptake and growth rate for both bone marrow and transplanted myeloma tumors (2) and a marked reduction in tissue uptake after whole-body X-irradiation (15).

Several investigations of 67Ga uptake by cells in vitro have been described, but these have mostly used short-term incubation of cells taken from animals (e.g., Refs. 6, 10, and 13). In experiments with cells of mouse tumor lines grown in continuous culture, we have demonstrated that certain kinds of serum can promote cellular accumulation of 67Ga (14). Although the culture medium routinely contained 10% fetal calf serum, additional rabbit, horse, or human serum at 2 μg/ml greatly stimulated cellular uptake of both tracers, whereas bovine transferrin proved relatively inactive. The active component of both human and horse serum was shown to be transferrin (14). Since transferrin is the principal iron carrier in serum and since some information as to its mechanism of iron transport into erythroid cells is already known (1), we have made some comparisons between 59Fe and 67Ga uptake by cultured tumor cells in dual tracer experiments. In this paper we report on some of the characteristics of transferrin-promoted 67Ga and 59Fe uptake by cultured cells of a mouse myeloma line.

MATERIALS AND METHODS

Cells. Mouse myeloma cell line HPC-108.1 was chosen because its growth in stationary suspension culture is rapid and reliable and its ability to concentrate 67Ga is somewhat greater than that of several other cell lines tested (14). It originated in 1971 (A. W. Harris, M. Holmes, and N. L. Warner, unpublished data) as paraffin oil-induced tumor HPC-108 in the peritoneal cavity of a 12-month-old male BALB/c ↔ C57BL chimeric mouse (constructed by embryo aggregation). The tumor was transplanted once through a BALB/c mouse, was then adapted to growth in culture and, after several months of growth in vitro, was cloned by direct single-cell isolation to yield a line designated HPC-108.1. For the derivation of the cell line and the present experiments, the culture medium comprised Dulbecco’s modified Eagle’s medium [Powder H-16 (Grand Island Biological Co., Grand Island, N. Y., or Commonwealth Serum Laboratories, Parkville, Australia)] with 3.4 g NaHCO3 per liter, 100 units penicillin G sodium per ml, 100 μg streptomycin sulfate per ml, and 10% heat-inactivated (56° for 1 h) fetal calf serum (Commonwealth Serum Laboratories). Fetal calf serum from Batch 783 was used in all experiments described in this paper. In this medium in a 10% CO2-air incubator at 37°, the cells grew exponentially, with a mean population-doubling time of about 12 h and a mean cell volume of about...

1 This research was supported in part by the National Health and Medical Research Council of Australia and the Wellcome Trust, England.
2 To whom requests for reprints should be addressed, at The Cancer Institute, 481 Little Lonsdale Street, Melbourne, Australia 3000.

Received February 1, 1977; accepted July 6, 1977.
1.5 ml, to a stationary phase at about 10^4 cells/ml. Cell concentrations and mean cell volumes were determined with a Model F^®_X Coulter counter (Coulter Electronics Ltd., Dunstable, England) and its accessory mean cell volume computer, which was calibrated with red mulberry pollen of a mean grain volume of 1.54 pl.

Radioactive Tracers. Carrier-free ^{67}Ga with a stated specific activity of >30 Ci/mg was obtained in citrated form (Radiochemical Centre, Amersham, England) and used in cell cultures at a concentration of about 0.1 μCi/ml. ^{59}Fe as ferric citrate (Radiochemical Centre), with a specific activity of 10 Ci/g, was used at about 0.01 μCi/ml. Within each experiment all cultures contained equal ^{67}Ga and equal ^{59}Fe concentrations although the concentrations varied moderately between experiments. Stock solutions of the tracers were diluted to appropriate concentrations in 0.85% NaCl solution and added to cultures within 1 hr of dilution.

Transferrins. Purified human and bovine transferrin (Calbiochem, Sydney, Australia) were dissolved in 0.85% NaCl solution and sterilized by filtration [GSPW filter (Millipore Corp., Bedford, Mass.)].

Iron Loading of Transferrins and Serum. Freshly prepared solutions of ferric citrate in water were sterilized by filtration, their iron content was measured by atomic absorption spectroscopy (Varian TEC 1720, Model AA5), and dilutions were added to solutions of human transferrin. These mixtures were incubated at 37°C for 24 hr before their use in cell culture experiments. Iron loading of filtered serum was effected similarly.

Measurements of ^{67}Ga and ^{59}Fe Uptake by Cells. Suspensions of exponentially growing HPC-108.1 cells were diluted in warm culture medium to a concentration that would allow continued exponential cell growth through a subsequent incubation period with added tracers. To the diluted bulk cell suspension was added ^{67}Ga citrate, and then 5-ml aliquots were dispensed into 50-mm-diameter plastic Petri dishes (Kayline Medical Plastics, Adelaide, Australia) containing separate aliquots of ^{59}Fe citrate and transferrin or 0.85% NaCl solution (as appropriate) in volumes not exceeding 0.2 ml each. Duplicate cultures for each variable under test were set up. After incubation, each culture was mixed, a 0.2-ml sample was taken for cell concentration and mean cell volume determinations, and the remainder was centrifuged in conical plastic centrifuge tubes (Kayline) at 700 × g for 10 min at room temperature. Supernatant medium was decanted, and 1.0-ml samples from representative cultures were taken for radioactivity measurements. The cell pellets were resuspended in 10 ml phosphate-buffered saline [0.01 M phosphate and 0.15 M NaCl, pH 7.0] and recentrifuged, the fluid was decanted, and the cell pellets were retained for radioactivity measurements. ^{67}Ga and ^{59}Fe radioactivities were assayed with a well-type dual-channel spectrometer with a 70- to 110-keV window for ^{67}Ga and a 600- to 1400-keV window for ^{59}Fe. Counting of separate ^{67}Ga and ^{59}Fe standards allowed the appropriate small corrections to be made to dual tracer assays for "spillover" between counting windows. In each experiment several cultures containing all of the additions except cells were included to check that sedimentable non-cell-bound radioactivity did not constitute a substantial fraction of any apparent cell-bound radioactivity measured.

RESULTS

In the following results each data point is the mean value of measurements from duplicate cultures; the average variation between duplicates is about 10%. The reproducibility of the system has also been illustrated in a previous paper (14).

Kinetics of Transferrin-promoted Uptake. Chart 1 shows the results of an experiment in which ^{67}Ga, ^{59}Fe, and human transferrin were added to HPC-108 cell cultures at various times before harvest. The cell concentrations in all cultures were identical at the time of final measurement of cell-bound radioactivity, and kinetic responses were measured for each of 4 different transferrin concentrations. The form of the experiment is such that the results reflect the rate of increase in cell concentration as well as the rate of uptake of tracers per cell. With a cell population-doubling time of 12 hr, the number of cells exposed to isotopes and transferrin during the 1st half of the 48-hr-total period is a small
proportion of the final cell number, and thus one would not expect much increase for 48- over 24-hr uptakes. In several such experiments the typical 65Ga result approached a plateau towards 48 hr, but for 55Fe the 48-hr uptake was in fact always lower than the 24-hr uptake. Another characteristic difference between the 2 tracers (Chart 1) was that 65Ga uptake increased with transferrin concentration within the range tested, whereas the 55Fe response declined at high (50-µg/ml) transferrin concentrations.

Retention of Cell-associated Tracers. Cells labeled with 65Ga and 55Fe in the presence of transferrin were tested for tracer retention after 2 generations of cell multiplication in medium containing neither tracers nor active transferrin. Results showed that for each tracer cellular retention over this period was virtually 100%. These measurements refer to cellular binding that is sufficiently firm to withstand the usual washing procedure.

Dependence of Uptake on Transferrin Concentration. Cell-associated radioactivity was measured after 24-hr incubations of cells with the 2 tracers and with the addition of transferrin to final concentrations ranging between 0 and 200 µg/ml. Chart 2 depicts the results for both human and bovine transferrin. The titration curves are characteristically different for the 2 tracers. With increasing concentrations of human transferrin, 55Fe uptake rose steeply, passed through a maximum at about 20 µg/ml, and then gradually declined, whereas 65Ga uptake rose steeply toward an eventual plateau. The maximum uptakes were 10- to 20-fold above those occurring without added transferrin. Relative to tracer concentrations in the medium, maximum 65Ga uptake corresponded to a 35-fold concentration, and 55Fe corresponded to a 100-fold concentration of isolate by the cells. With increasing concentrations of bovine transferrin, no uptake stimulation was detectable for 55Fe, but a significant and progressive stimulation of 65Ga uptake did occur. The 65Ga result is noteworthy in that 50 µg bovine transferrin per ml is equivalent to the transferrin concentration in less than 2% bovine serum, and yet its addition to cultures containing 10% fetal calf serum resulted in significant stimulation of 65Ga uptake.

Effects of Added Iron. The effect of iron saturation on the ability of transferrin or serum to stimulate tracer uptake by HPC-108 cells was investigated in several ways. The first was to measure uptake in the presence of human transferrin that had been pretreated with various amounts of ferric citrate; the results of such an experiment are shown in Chart 3. The estimated amount of Fe$^{3+}$ required to saturate the iron-binding capacity of transferrin is shown, and the 55Fe uptake stimulation had fallen to zero at about this level as expected. In contrast, the stimulated 65Ga uptake declined more gradually, the added transferrin retaining some significant activity well beyond its point of iron saturation. The inhibition of 65Ga uptake by iron was further investigated by testing the stimulatory activity of different concentrations of human serum that had been pretreated with an approximately saturating amount of Fe$^{3+}$. The results (Table 1) show that 65Ga uptake stimulation by the larger (1.5%) serum addition was greatly reduced by iron pretreatment, whereas that by the smaller (0.25%) serum addition was much less affected by the same iron pretreatment. As in the previous experiment, an addition of about 0.02 µg Fe$^{3+}$ caused a substantial reduction in 65Ga uptake, but unlike 55Fe uptake the 65Ga response seemed to be affected more by the amount of iron added to the cultures than by the degree of iron saturation of the added serum or transferrin.

Table 1

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>Human serum addition</th>
<th>Cellular uptake of tracer (cpm/culture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.85% NaCl solution</td>
<td>65Ga: 2100, 55Fe: 520</td>
</tr>
<tr>
<td>0.25</td>
<td>Iron*</td>
<td>65Ga: 9000, 55Fe: 2300</td>
</tr>
<tr>
<td>0.25</td>
<td>0.85% NaCl solution</td>
<td>65Ga: 7000, 55Fe: 850</td>
</tr>
<tr>
<td>1.5</td>
<td>Iron*</td>
<td>65Ga: 15200, 55Fe: 1730</td>
</tr>
<tr>
<td>1.5</td>
<td>0.85% NaCl solution</td>
<td>65Ga: 4500, 55Fe: 660</td>
</tr>
</tbody>
</table>

* Whole serum was incubated with ferric citrate at an iron concentration of 3.4 µg/ml.
DISCUSSION

Enlarging upon previous work (14), these studies have shown that both 67Ga and 59Fe uptakes by cultured mouse tumor cells can be greatly stimulated by the addition to the culture medium of serum or transferrin from certain species. Human transferrin gave high uptake stimulations for both 67Ga and 59Fe, whereas bovine transferrin was relatively inactive in each case. Transferrin and tracer additions to the system were small in relation to the amounts of bovine transferrin and iron contained in the 10% fetal calf serum component of the culture medium. The influence of 10% fetal calf serum was kept constant throughout the present experiments by the use of fetal calf serum from a single commercial batch, but its significance has to be appreciated in interpreting the results.

Kinetic studies of transferrin-promoted 67Ga and 59Fe uptake showed that incubation periods of at least several hr were required to obtain measurements substantially above background. Long-term kinetic experiments, however, were complicated by the continuing and rapid process of cell growth. Thus interpretations of the kinetic results in Chart 1 have to allow for exponential cell population growth and an experimental design in which the tracers and transferrin were added at various times before the final and simultaneous harvest of all the cultures. When these are taken into account, the results suggest that the rate of uptake per cell is constant for both 67Ga and 59Fe. The reduced 48-hr uptake of 59Fe compared with the 24-hr uptake is probably due to some slow process that renders 59Fe unavailable for transport into cells (perhaps exchange with nonradioactive iron on transferrin of the fetal calf serum). Our general experience has been that this effect does not appear with 67Ga. From the results of kinetics experiments, it was decided to use a 20- to 24-hr incubation period in subsequent uptake measurements.

For human transferrin the dose-response relationships for both 67Ga and 59Fe were approximately linear at low transferrin concentrations (Chart 2). To explain their divergence at higher concentrations, we postulate the onset of transferrin saturation (e.g., of cell surface receptors) in the region of 20 to 50 μg/ml. It is then suggested that the presence of excess or noninteracting transferrin can progressively reduce the proportion of 59Fe available for cellular uptake. That effect is readily explained in terms of the very high transferrin affinity of 59Fe (1). In the 67Ga case and for the range of transferrin concentrations studied, no such reduction of uptake response would be expected because the transferrin affinity of 67Ga is much lower (Ref. 4; R. G. Sephton, F. N. Cornell, and S. De Abrew, unpublished observations).

The same reasoning is tentatively applied to the bovine transferrin titrations. However, to explain the low 67Ga and negligible 59Fe stimulations observed, we have additionally to propose that this transferrin molecule either has a low affinity for cell surface receptors and/or is relatively inefficient in activating the cellular uptake process. It remains difficult to understand why even low 68Ga responses are observed with additions that are still low in relation to the amount of fetal calf transferrin already present in the culture medium. The explanation may be forthcoming when more is known about the states of bovine transferrin and iron in the fetal calf serum.

Another possibility for analogy between 67Ga and 59Fe was explored by testing the uptake-promoting activity of transferrin or serum that had been pretreated with various amounts of nonradioactive iron (Chart 3). As expected, saturation of the iron-binding capacity of transferrin in this way preempted its ability to promote 59Fe uptake. By contrast, it required much larger than saturating amounts of iron to reduce substantially its subsequent activity toward 67Ga. The finding that 67Ga uptake was reduced by addition of larger amounts of iron-loaded serum suggested that the effect of iron on 67Ga uptake was dependent on the total amount of iron added to the culture system rather than on the iron-saturated state of the added transferrin. These experiments produced further evidence that, in spite of some similarities, there are substantial differences between the uptake mechanisms of these 2 tracers.

Further work is required before a detailed picture of the 67Ga uptake mechanism can be derived from cell culture experiments. These results, however, indicate that mouse myeloma cells are capable of interactions with transferrin that initiate both 67Ga and 59Fe uptake mechanisms. Both tracers eventually become irreversibly cell bound, possibly to some intracellular component(s). However, there have also been revealed some marked differences between 67Ga and 59Fe uptake responses. These may possibly be explained in terms of their different transferrin affinities, or they may reflect other, more basic differences between their uptake mechanisms. Qualitatively similar findings have been gained with the range of cultured cell types referred to in our previous report (14); the preceding comments therefore apply to other mouse tumor cells, possibly to other mammalian cells as well.

One of the chief aims of this work is an eventual explanation of 67Ga in vivo distributions. These are characterized by high uptakes in certain tumors and relatively low uptakes in hemopoietic tissues, in marked contrast with 59Fe distributions. It may be that such different cell populations have in common the property of interaction with transferrin but are otherwise distinguished by different capacities for transporting intracellularly or binding the 2 tracers.

ACKNOWLEDGMENTS

We acknowledge useful discussions with Dr. G. S. Hodgson and F. N. Cornell of the Cancer Institute on the development of this work and the skilled technical assistance of E. Anderson and S. De Abrew.

REFERENCES

Transferrin Promotion of 67Ga and 59Fe Uptake by Cultured Mouse Myeloma Cells

Alan W. Harris and Robert G. Sephton

Updated version
Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/37/10/3634

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.