Alteration of Prostaglandin Biosynthesis in Rat Chloroleukemic Tumor

Vincent A. Ziboh, Jonathan T. Lord, Gary Blick, Ismet Kursunoglu, Joseph Poitier, and Adel A. Yunis

Departments of Dermatology [V. A. Z., J. T. L., G. B., I. K., J. P.] and Medicine [A. A. Y.], University of Miami, and The Howard Hughes Medical Institute, Miami, Florida 33152

SUMMARY

Data from our present studies demonstrate the capability of a 105,000 x g pellet from rat normal bone marrow, turpentine-induced hyperplastic bone marrow, and chloroma tumor to transform precursor arachidonic acid into prostaglandins. The activity of the prostaglandin synthetase systems in these tissues is inhibited by the known nonsteroid antiinflammatory drug indomethacin and by two unsaturated fatty acids previously demonstrated in other tissues. Although the overall biosynthesis of prostaglandin \(E_2 \) (PGE2) was higher in the hyperplastic bone marrow than in the chloroma tumor, the PGF\(_{2\alpha}\)/PGE2 ratio was markedly higher (8-fold) in the chloroma tissue. This latter increase was probably due to the increased transformation of PGE2 into PGF\(_{2\alpha}\) by the NADPH-dependent PGE2-9-ketoreductase (an enzyme that catalyzes the transformation of PGE2 and PGF\(_{2\alpha}\)). These results indicate the greater capability of the malignant chloroma tissue to form PGF\(_{2\alpha}\) than of nonmalignant hyperplastic bone marrow. Although the role of PGF\(_{2\alpha}\) in the malignant myelogenous leukemic tumor is presently unclear, its increased formation in this tissue suggests that this substance may play a role in the hyperproliferative process.

INTRODUCTION

In recent years the study of prostaglandins has added another dimension to the physiology of tumors. They have been implicated in various aspects of tumor growth including cell replication. In several instances symptoms associated with tumors are thought to be due to an overproduction of prostaglandins. In 1968 William et al. (20) reported elevated levels of prostaglandins in tumor tissues and in plasma patients with medullary carcinoma of the thyroid. Since then, several investigators (2—4, 8, 9, 14, 27) have either confirmed or shown the presence of large amounts of prostaglandins in a variety of other human and animal carcinomas. Furthermore, experiments with mouse fibrosarcoma and Walker carcinoma have contributed significantly to understanding of the role of prostaglandins in the hypercalcemia of neoplastic disease (10, 16, 17). Results from these studies have important clinical implications. Despite these observations the role of prostaglandins in cellular differentiation and neoplasia is still unclear. Nonetheless, it seems that alterations in the biosynthesis and metabolism of prostaglandins could be a function of increased proliferative activity per se or a property associated with the neoplastic process. To examine these possibilities we have used, as an experimental model, rat chloroma, a transplantable tumor composed of immature granulocytes. As an actively proliferating control tissue, we used granuloid hyperplastic rat bone marrow, which is also composed of immature granulocytes, predominantly myeloblasts, promyelocytes, and myelocytes. This report describes the in vitro biosynthesis of PGE2\(^*\) and PGF\(_{2\alpha}\) from arachidonic acid by 105,000 x g preparations from these tissues.

MATERIALS AND METHODS

Materials. [\(^{1-14}C\)]Arachidonic acid (58.0 mCi/mmole) and [\(^{3}H\)]PGE2 (125 Ci/mmole) were purchased from New England Nuclear, Boston, Mass. Radiopurity for arachidonic acid was ascertained after a portion of this material was methylated with diazomethane, and the methyl ester was chromatographed on a thin-layer (TLC) plate coated with AgNO3-impregnated Silica Gel G. Approximately 95% of the chromatographed \(^{14}C\) was found to have the retention time of methyl arachidonate. Radiopurity for PGE2 was ascertained by TLC in the solvent system chloroform:methanol:acetic acid:water (90:8.5:1:0.65). Seventy to 80% of the chromatographed \(^3H\) was found to have similar chromatographic mobility as authentic PGE2. Authentic PGE2 and PGF\(_{2\alpha}\) were gifts from Dr. Udo Axen of The Upjohn Co., Kalamazoo, Mich. The fatty acids (99%) were obtained from Lipid Organic Research, Elyssian, Minn. Indomethacin was a gift from Merck Sharp and Dohme Research Laboratories, Rahway, N. J. Turpentine was U.S.P. grade. NADPH was purchased from Sigma Chemical Co., St. Louis, Mo. Sephadex (G-25; coarse) was purchased from Pharmacia Fine Chemicals, Inc., Piscataway, N. J. Reagents were of analytical grade, and solvents were redistilled before use.

Methods. The chloroleukemic tumors used in these stud-

1 Supported in part by USPHS Grant AM14941 and AM09001.
2 To whom requests for reprints should be addressed, at Department of Dermatology, University of Miami School of Medicine, P. O. Box 520875, Biscayne Annex, Miami, Fla. 33152.
3 Howard Hughes Investigator.
4 The abbreviations used are: PGE\(_2\), prostaglandin E\(_2\); PGF\(_{2\alpha}\), prostaglandin F\(_{2\alpha}\); TLC, thin-layer chromatography; PGB\(_2\), prostaglandin B\(_2\); PGD\(_2\), prostaglandin D\(_2\).

3974 CANCER RESEARCH VOL. 37

Downloaded from cancerres.aacrjournals.org on April 20, 2017. © 1977 American Association for Cancer Research.
ies were produced in newborn Sprague-Dawley rats by the injection of chloroma cells (1 × 10^6 cells/rat s.c.) maintained in culture (Mia C51) as described by Yunis et al. (21). The tumors used in these experiments were fresh 1-cm tumors with no evidence of necrotic areas. This type of tumor has been studied and characterized by Yunis and Gentry (22).

Intense bone marrow granuloid hyperplasia was induced in Sprague-Dawley rats by the s.c. injection of 2 ml of turpentine in the dorsolumbar region as reported by Murray and Connell (12). The rats were sacrificed, and their marrow was harvested 48 to 72 hr after injection.

Preparation and Incubation of 105,000 × g Fractions from Normal and Hyperplastic Bone Marrows and Chloroma Tissue. Fresh bone marrow and chloroma tissue specimens were homogenized in 4 volumes of ice-cooled 0.1 M potassium phosphate, pH 7.4, in an ice bath with a motor-driven glass homogenizer. The low-speed pellet and cellular debris were removed by centrifugation of the homogenate at 800 × g for 15 min. The supernatant fluid was first centrifuged at 12,000 × g for 15 min to give the intermediate pellet fraction, and the resultant supernatant fluid was centrifuged at 105,000 × g for 60 min to give the crude 105,000 × g particulate fraction. This final high-speed pellet was rinsed with buffer, resuspended in the same buffer, and stored in ice for incubations. The protein contents of 105,000 × g pellets from hyperplastic bone marrow and chloroma tissues were determined by the method of Lowry et al. (11) with bovine serum albumin as standard.

The procedure for the study of PGE_2 biosynthesis in human skin reported previously (23) was used. [-{14C}]Arachidonic acid (0.2 μCi; 5 pmoles) was dissolved in benzene first and then was added to the incubation flask. The solvent was then evaporated to dryness by a stream of nitrogen. To the flask was added hydroquinone (0.05 mm) in buffer, and the flask was shaken in a vortex mixer as described previously (23). The reaction was initiated by the addition of 2 ml of the suspension of the 105,000 × g pellet in 0.1 M phosphate buffer, pH 7.4, to the incubation medium. In preliminary experiments the mixture was incubated aerobically with shaking at 37° for 5, 15, 30, and 60 min, respectively. Since maximal transformation of arachidonic acid into prostaglandins was attained at 15 min, all subsequent incubations were carried out for this time period. Control experiments were incubated with 2 ml of a suspension of the 105,000 × g pellet, which had been boiled for 15 min. The incubations were stopped by the addition of 5 ml of chloroform:methanol (2:1, v/v) to each flask. This procedure has been shown in previous prostaglandin biosynthetic studies in our laboratory (23) to stop the enzymatic transformation of arachidonic acid into prostaglandins. The suspension was transferred into a separator flask and extracted twice with 25 ml of the same solvent mixture. The combined extracts were evaporated to dryness in a rotary evaporator. The residue was dissolved in a small volume of chloroform:methanol (1:1, v/v) and subjected to TLC on Silica Gel G thin-layer plates.

TLC and Determination of Prostaglandins. TLC on Silica Gel G was performed according to Nugteren and Hazelfoh (13). Thin layers of Silica Gel G were prepared on glass plates and activated at 110° for 30 min before use. The {14C} extract was applied to the activated plate. Small amounts of reference PGE_2 and PGF_2α were applied to another activated plate. Both plates were developed simultaneously in the solvent system diethyl ether:methanol:acetic acid (90:1:2). The plate containing authentic reference standards of PGE_2 and PGF_2α was placed in a tank of iodine vapor to visualize these prostaglandins. This plate was placed beside the plate containing the {14C} extract, the silica gel that corresponded with the reference PGE_2 and PGF_2α was scraped into a sintered glass funnel, and the {14C} was eluted with chloroform:methanol (1:1). Aliquots of the eluents were assayed for radioactivity with a Packard Tri-Carb Model 2002 liquid scintillation counter as reported previously (23). The remaining portions of the eluent were evaporated to dryness under a stream of nitrogen for further identification. The above TLC system is effective for the separation of {14C} primary prostaglandins from [1-14C]arachidonic acid and other radioactive polar and neutral lipid products.

For further identification of PGE_2 and more efficient separation from PGF_2α, reference PGE_2 and PGF_2α were treated with 3 ml of 0.5 M NaOH in 50% aqueous ethanol at room temperature for 30 min as reported previously (23). Under these conditions, prostaglandin E's form products containing the Δ⁵(12)-13-9-keto chromophore by elimination of the 11-hydroxy group and isomerization of the resulting double bond. The sample was diluted with H_2O and then acidified with 6 N HCl to pH's 2 to 3. The acidified extract was extracted 3 times with 10 ml of dichloromethane, and the combined extracts were evaporated to dryness under nitrogen. The sample was dissolved in a minimum amount of chloroform:methanol (1:1) and applied to activated Silica Gel G plates. The plates were then developed in the solvent system ether:acetic acid (100:2). After the PGB_2 and PGF_2α were visualized in iodine vapor, the areas of silica gel corresponding to each of the 2 prostaglandins were scraped at 0.5-cm portions into scintillation vials. The radioactivity was determined in toluene containing 0.4% PPO with a Packard Tri-Carb Model 2002 liquid scintillation counter.

Estimation of Prostaglandins E and F by Gas-Liquid Chromatography with Electron Capture Detection. Specimens from normal bone marrow, hyperplastic bone marrow, and chloroma tumor were removed rapidly and dropped immediately into vials containing chloroform:methanol (2:1) (25) to stop enzymatic release of precursor fatty acid and synthesis of prostaglandins. The tissues were homogenized in chloroform:methanol with a motor-driven glass homogenizer at 4°. An aliquot of the homogenate was dried under N_2. The residue was dissolved in 1 N NaOH, and the solution was used for protein assay according to the method of Lowry et al. (11) with bovine serum as standard. The remaining extract was filtered and rinsed on a sintered glass funnel to remove tissue debris. The filtrate was evaporated to dryness in a rotary evaporator. The residue containing total lipids was dissolved in a small volume of chloroform:methanol (1:1) and subjected to TLC on Silica Gel G in the solvent system diethyl ether:methanol:acetic acid (90:1:2). In this system, prostaglandins E and F effectively separate from the other lipids.
Authentic samples of prostaglandins E and F were carried through the entire procedure. Recovery of prostaglandins was greater than 95%.

Methyl esters of PGE2 and PGF2α were prepared by treatment of both fractions with ethereal diazomethane solution at room temperature for 30 min. The O-methoxime derivatives were produced by reacting the methyl esters with 100 μl of pyridine containing methoxime hydrochloride overnight at room temperature according to Green (7). The O-methoxime methyl esters were dissolved in bis(trimethylsilyl)acetamide for 3 hr to form the methoxime trimethylsilyl derivatives of methyl esters of prostaglandins E and F. Reference PGE2 and PGF2α were treated similarly as described above for identification and quantitative comparison. Standard curve of the reference prostaglandin derivatives was obtained and used to estimate the amounts in the tissue samples. Aliquots of the samples were injected into a Hewlett-Packard 5730A gas chromatograph equipped with a 35Ni ED detector and connected to a HP 3380A integrator. The column used in these experiments was a coiled glass column [6 ft long x 0.25 inch (internal diameter)] packed with 1% SE 30 on 100 to 120 mesh Supelcoport. The carrier gas was nitrogen. Column temperature and chromatographic runs were as reported by Green (7). Quantitation was by comparison of integrated peak areas of tissue samples with authentic prostaglandin standards.

Conversion of PGE2 into PGF2α by 105,000 × g Supernatant Fraction from Hyperplastic Bone Marrow and Chloroleukemic Tumor. For localization of the activity of the PGE2 9-ketoreductase, the above specimens were homogenized with a Polytron PT-20 homogenizer (Kinematica, Lucerne, Switzerland) in 5 volumes of ice-cold 0.1 mM dithiothreitol. Preparation of the 105,000 × g supernatant fraction by differential centrifugation was as described previously (24). For removal of endogenous pyridine nucleotides and other small-molecular-weight substances, the 105,000 × g supernatant fraction was partially purified and concentrated by filtering through Sephadex G-25 (coarse). The protein in the concentrated 105,000 × g supernatant fraction was determined by the method of Lowry et al. (11) with bovine albumin used as standard.

Enzyme Assay. The enzymatic reduction of PGE2 was measured, unless otherwise stated, in a final volume of 1 ml of 0.1 M phosphate buffer (pH 7.4) containing MgCl2 (4 mM), NADPH (2.0 mM), dithiothreitol (0.1 mM), 105,000 × g supernatant fraction (6 mg protein), and [3H]PGE2 (0.1 μCi; 1 pmole) as reported previously (24). The mixture was incubated aerobically with shaking in a Dubnoff incubator at 37° for 30 min. These conditions were optimal for the enzymatic assay in these tissues. Control experiments contained [3H]PGE2 and subcellular fractions boiled previously for 15 min. The incubations were terminated by the addition of 15 ml of chloroform:methanol (2:1, v/v) to the incubation vial. The mixture was extracted twice with 15 ml of the same solvent mixture. The combined lipid extracts were evaporated to dryness under a stream of N2 gas. The residue was dissolved in a small volume of chloroform:methanol (1:1, v/v) and then chromatographed on Silica Gel G thin-layer plates as described above. The activity of the PGE2 9-ketoreductase was calculated from the amount of radioactivity that cochromatographed with authentic PGF2α as a percentage of the total radioactivity recovered.

RESULTS

Histological evaluations of normal bone marrow, turpentine-induced hyperplastic bone marrow, and chloroma tumor specimens are shown in Fig. 1. Normal rat marrow (Fig. 1A) is characterized by a mixture of granuloid (largely mature granulocytes), erythroid, and lymphoid cells, whereas the turpentine-induced hyperplastic bone marrow (Fig. 1B) and the chloroma tumor (Fig. 1C) are characterized by a predominance of immature granulocytes. The hyperplastic bone marrow (nonmalignant) tissue serves as a control for the chloroma (malignant) tissue.

Biosynthesis of [14C]PGE2 and [14C]PGF2α from [14C]Arachidonic Acid. Incubation of [1-14C]arachidonic acid (0.2 μCi; 5 pmoles), respectively, with 105,000 × g pellets from normal bone marrow, hyperplastic bone marrow, and chloroma tumor for 15 min resulted in the formation of radioactive products with chromatographic mobilities similar to PGE2 and PGF2α. A typical chromatogram of radioactive products formed after incubation of [14C]arachidonic acid and 105,000 × g pellet from hyperplastic bone marrow is shown in Chart 1. Several radioactive peaks including chromatographic mobilities similar to authentic PGE2, PGF2α, and PGD2 are shown. In this TLC system, polar lipids (phospholipids) remain near the origin, whereas the neutral lipids are near the solvent front ahead of the 3 primary prostaglandins. For further purification and identification of the radioactive products, the 14C corresponding to authentic reference PGE2 and PGF2α was eluted and treated with ethanolic KOH as described under "Methods." Final separation of radioactive PGE2 (PGE2) from PGF2α was achieved after thin-layer chromatography.
in the solvent system ether:acetic acid (100:2) as reported previously (23).

The transformation of arachidonic acid into \([^{14}C]\)PGE\(_2\) and \([^{14}C]\)PGF\(_{2\alpha}\) by 105,000 \(\times\) g pellet preparations from normal bone marrow, turpentine-induced hyperplastic bone marrow, and chloroma pellet preparations are shown in Table 1. The results indicate that 105,000 \(\times\) g preparations from both bone marrow specimens and from chloroma tumor are capable of transforming arachidonic acid into PGE\(_2\) and PGF\(_{2\alpha}\), although transformation is low in normal bone marrow. The normal bone marrow cells are, however, different from those of the proliferating hyperplastic bone marrow and chloroma tissue (Fig. 1) and therefore are not suitable for comparison with 2 proliferating specimens. Nonetheless, these results are consistent with the 2 proliferating reports that have demonstrated that the 105,000 \(\times\) g pellet fraction from various tissues is the site of prostaglandin biosynthesis (5, 6, 15, 23). These results also indicate that the 105,000 \(\times\) g particulate preparations from turpentine-induced hyperplastic bone marrow specimens are most active in the transformation of precursor arachidonic acid into prostaglandins E and F. Furthermore, prostaglandin biosynthesis by 105,000 \(\times\) g pellet preparations from chloroma tumor was lower than that by 105,000 \(\times\) g pellet preparation from hyperplastic nonmalignant bone marrow.

Time Course of \([^{14}C]\)Arachidonic Acid into PGE\(_2\) and PGF\(_{2\alpha}\) by 105,000 \(\times\) g Pellet Preparations from Hyperplastic Bone Marrow. Since the turpentine-induced hyperplastic bone marrow represents our control for the studies with the chloroleukemic tumor, because cells from both tissues were predominantly myeloblasts, promyelocytes, and myelocytes (Fig. 1), the time course of the transformation of \([^{14}C]\)arachidonic acid into \([^{14}C]\)-prostaglandins by 105,000 \(\times\) g pellet from the hyperplastic bone marrow was tested. The results shown in Chart 2 indicate that the transformation of the precursor fatty acid by the bone marrow 105,000 \(\times\) g pellet preparation into prostaglandins E and F was maximal in approximately 15 min. A similar maximal condition was observed for incubations with the chloroma 105,000 \(\times\) g pellet preparation.

Inhibition of Prostaglandin Biosynthesis by Indomethacin and Fatty Acids. The effects of known inhibitors of prostaglandin biosynthesis in other tissues were tested on the transformation of arachidonic acid into prostaglandins by 105,000 \(\times\) g pellets prepared from hyperplastic bone marrow and chloroma tumor. Inhibition of the biosynthesis of PGE\(_2\) and PGF\(_{2\alpha}\) by the 3 substances are shown in Table 2. Thus, the prostaglandin synthetase enzymes in the bone marrow and the chloroma tissue are also responsive to the inhibitory action of these substances.

Prostaglandin Levels in Normal Bone Marrow, Hyperplastic Bone Marrow, and Chloroleukemic Tumor. Prostaglandin levels in normal bone marrow, hyperplastic bone marrow, and chloroleukemic tumor specimens were determined by gas-liquid chromatography as described under "Methods". Quantitation of tissue samples was derived from a standard curve obtained with authentic PGE\(_2\) and PGF\(_{2\alpha}\). The results are shown in Table 3. Endogenous levels of PGE\(_2\) and PGF\(_{2\alpha}\) were elevated in both turpentine-induced hyperplastic bone marrow and chloroma tumor compared to normal bone marrow. Of interest is the endogenous level of PGF\(_{2\alpha}\) in the chloroma tumor, which is approximately 5-fold greater than that in the hyperplastic bone marrow. The PGF\(_{2\alpha}\)/PGE\(_2\) ratio was also markedly greater in the chloroma tissue than it was in the hyperplastic bone marrow specimens. These data suggest the possible formation of PGF\(_{2\alpha}\) from a source other than directly from the cyclic endoperoxides.

Activity of the PGE\(_2\) 9-Ketoreductase Activity in 105,000 \(\times\) g Supernatant Fractions from Hyperplastic Bone Marrow and Chloroleukemic Tumor. Incubations of \([^{3}H]\)PGE\(_2\) with the above supernatant fractions and NADPH resulted in the formation of radioactive PGF\(_{2\alpha}\). The data in Chart 3 show an approximately 4-fold increase in the activity of the NADPH-dependent PGE\(_2\) 9-ketoreductase in the chloroma tissue compared to that in the hyperplastic bone marrow.
Effects of nonsteroid antiinflammatory drug and unsaturated fatty acids on the biosynthesis of prostaglandins by hyperplastic bone marrow and chloroma tumor

Pellet fractions (105,000 × g; 10 mg protein) from turpentine-induced hyperplastic bone marrow and chloroma tissue were incubated with [1-14C]arachidonic acid (0.2 µCi), respectively. Details of the procedure and identification of the radioactive products are described under “Methods”. The data are the means ± S.E. from 3 experiments.

<table>
<thead>
<tr>
<th>Concentration (µM)</th>
<th>% 14C/mg protein</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>3.8 ± 0.42</td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td>0.4 ± 0.03</td>
<td>87</td>
</tr>
<tr>
<td>5,8,11,14-Eicosatetraenoic acid</td>
<td>0.8 ± 0.09</td>
<td>79</td>
</tr>
<tr>
<td>5,8,11,14-Eicosatrienoic acid</td>
<td>2.3 ± 0.26</td>
<td>39</td>
</tr>
</tbody>
</table>

Table 3
Endogenous levels of prostaglandins in normal bone marrow, hyperplastic bone marrow, and chloroma tumor

Gas-liquid chromatographic analysis was done of O-methoxime silyl derivatives of prostaglandins E and F. Details of the analysis are described in the text. Tissues were rapidly homogenized in chloroform:methanol (2:1) to stop the enzymatic production of prostaglandins during the extraction procedure; however, the values reported could also reflect in part slight contributions of prostaglandins formed by the tissues after trauma. Each value represents the mean ± S.E. from 4 specimens.

<table>
<thead>
<tr>
<th>PGE2 (pg/mg protein)</th>
<th>PGF2α (pg/mg protein)</th>
<th>PGF2α:PGE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal bone marrow</td>
<td>210.4 ± 25.6</td>
<td>114.2 ± 19.2</td>
</tr>
<tr>
<td>Hyperplastic bone marrow</td>
<td>620.8 ± 58.9</td>
<td>789.1 ± 129.6</td>
</tr>
<tr>
<td>Chloroma tumor</td>
<td>430.1 ± 44.2</td>
<td>3986.9 ± 420.3</td>
</tr>
</tbody>
</table>

DISCUSSION

The present studies have demonstrated that 105,000 × g particulate preparations from normal rat bone marrow, turpentine-induced hyperplastic bone marrow, and chloroma tumor contain the enzyme systems for the transformation of arachidonic acid into prostaglandins. The activity of the prostaglandin synthetase systems in the 105,000 × g preparations is inhibited by the nonsteroid antiinflammatory drug indomethacin and the unsaturated fatty acids eicosa-tetraenoic acid (acetylenic analog of arachidonic acid) and eicosatrienoic acid (Table 2). These substances have been shown to inhibit the activity of the prostaglandin synthetase in other tissues (1, 5, 6, 18, 23, 26). Thus, the properties of the prostaglandin synthetase in rat bone marrow and in chloroma tumor are similar in at least this respect to those reported in other tissues.

Although the 105,000 × g particulate preparations from turpentine-induced hyperplastic bone marrow transformed more [3H]arachidonic acid into PGE2 than did preparations from chloroma tumor, the PGF2α:PGE2 ratio differed markedly in these 2 proliferative tissues. For instance, the PGF2α:PGE2 ratio in the hyperplastic bone marrow is approximately 0.4 as determined from the biosynthetic activity of the 105,000 × g particulate fraction, whereas that in the chloroma tumor is 1.10 (Table 1). In another assay system by gas-liquid chromatography of the endogenous prostaglandins in both tissues, the PGF2α:PGE2 ratio in the hyperplastic bone marrow is approximately 1.3, whereas the ratio of the chloroma tissue is 9.2 (Table 3). A further test...
to explain the increased elevation of PGF$_{2\alpha}$ in the chloroma tissue revealed a 4-fold increase in the activity of the PGE$_{2\alpha}$ 9-ketoreductase in this tissue (Chart 3) over the hyperplastic tissue. These results indicate a greater capability of the malignant chloroma tissue to form PGF$_{2\alpha}$ via the PGE$_{2\alpha}$ 9-ketoreductase pathway than of the nonmalignant hyperplastic bone marrow. Although the role of PGF$_{2\alpha}$ in the malignant myelogenous leukemic tumor is presently unclear, its increased formation suggests that this substance may at least in part play a role in the hyperproliferative process.

REFERENCES

Fig. 1. A, Wright-stained Coverslip preparation of normal rat bone marrow showing a mixture of large mature granulocyte elements, erythroid cells, and lymphocytes. x 320. B, granuloid hyperplastic rat bone marrow showing predominance of immature granulocyte cells (myeloblasts, promyelocytes, and myelocytes). x 320. C, rat chloroma cells (myeloblasts and promyelocytes). x 320.
Alteration of Prostaglandin Biosynthesis in Rat Chloroleukemic Tumor

Vincent A. Ziboh, Jonathan T. Lord, Gary Blick, et al.

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/37/11/3974

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.