Induction of Urogenital Anomalies and Some Tumors in the
Progeny of Mice Receiving Diethylstilbestrol during
Pregnancy¹

Taisei Nomura² and Tohru Kanzaki

First Department of Surgery [T. N.] and Institute for Cancer Research [T. N., T. K.], Osaka University Medical School, Fukushima-ku, Osaka 553, Japan

SUMMARY

Pregnant mice were given a single dose (10 μg/g body weight) of diethylstilbestrol (DES) on Days 7 to 19, which correspond to the first to fifth lunar months in humans, after the authors, using a ¹⁴C-labeled compound, confirmed easy placental penetration by DES. Treatment with DES on Days 15 to 19 resulted in the induction of persistent urogenital sinus (15.8 to 92.5%) and hypertrophy of the portio vaginalis (11.8 to 73.3%) in female offspring, and treatment on Days 17 and 19 resulted in the induction of undescended testes (11.8 to 73.3%) in male offspring, although treatment with DES at other stages of pregnancy and after birth did not cause these alterations. The incidence of various tumors (lung adenoma, granulosa cell tumor, etc.) increased significantly (31.0 to 37.9%) when DES was given on Days 15 and 17, which correspond to the stage sensitive to other carcinogens. However, adenosis and adenocarcinoma of the vagina were not observed in the offspring.

INTRODUCTION

In 1971, Herbst et al. (15) reported that synthetic stilbestrol (DES) therapy for abortion during pregnancy induced vaginal cancer in resulting children 14 to 22 years later. Since the 1st 8 cases were described, several others have been reported (13, 14, 39). Fortunately, the association of adenocarcinoma of the vagina with maternal stilbestrol therapy was discovered easily, as was the case in the thalidomide disaster, because this tumor is extremely rare so early in life. In experimental animals, transplacentai toxicity, including carcinogenesis with chemicals, has been reported before the use of DES (19, 34). However, no significant carcinogenicity of DES was detected in newborn mice (6–8), although adenotic changes were observed in the uterine cervix and vagina after neonatal treatment with DES (7, 8) and estrogen (7) and although anterior pituitary tumors in 15 to 19 resulted in the induction of undescended testes (11.8 to 73.3%) in male offspring, although treatment with DES at other stages of pregnancy and after birth did not cause these alterations. The incidence of various tumors (lung adenoma, granulosa cell tumor, etc.) increased significantly (31.0 to 37.9%) when DES was given on Days 15 and 17, which correspond to the stage sensitive to other carcinogens. However, adenosis and adenocarcinoma of the vagina were not observed in the offspring.

¹ This paper was prepared at the Department of Genetics (Paper 2080), University of Wisconsin, during the tenure of a Research Training Fellowship awarded from the International Agency for Research on Cancer (WHO). Presented at a seminar of the Rockefeller University in 1974.

² Present address: Department of Genetics, University of Wisconsin, Madison, Wis. 53706. To whom requests for reprints should be addressed.

Radioactivity Measurement. One μCi of [monoethyl-¹⁴C]DES (specific activity, 52.0 mCi/mkmole; The Radiochemical Centre, Amersham, England) per g body weight was injected s.c. into the Day 18 pregnant mice. The pregnant mice were paired and killed 1 and 5 hr after injection, and 10 to 15 mg of specimens of various organs from each pair and their fetuses were solubilized in 1.0 ml of Soluene 100 (Packard Instrument Co., Inc., Downer’s Grove, Ill.). Fifteen ml of scintillator were added into solubilized tissues, and the total ¹⁴C was measured by liquid scintillation counter (29).
Treatment during Pregnancy. Pregnant mice received a single s.c. injection of 10 μg of DES disodium salt per g body weight (Tokyo Kasei Co., Tokyo, Japan) dissolved in water on Day 7, 9, 11, 13, 15, 17, or 19. For exclusion of a milk factor, the offspring exposed to DES on Day 19 were foster-nursed by untreated lactating mothers and the offspring receiving water on Day 19 were foster-nursed by the Day 19 DES-treated mothers. As a natural estrogen, 20 μg of 17β-estradiol (provided by Dr. S. S. Koide, The Rockefeller University, New York, N. Y.) per g were given on Day 19. The offspring were separated from the mothers 4 weeks after birth and were killed the 12th month after birth. The dose of DES corresponds to the maximum dose tolerated by pregnant ICR/Jcl mice; all 13 pregnant mice receiving larger amounts of DES (20 to 500 μg/g) aborted because of abruption of the placenta. A high dose of DES (500 μg/g) was given to 8 pregnant mice on Day 10, and external malformations of their fetuses were examined by hysteroscopy immediately after the discovery of vaginal bleeding (Days 14 to 15). All of the fetuses isolated just before abortion were still living in utero.

Treatment of Neonates and Young Mice. Male and female neonates received a single s.c. injection of 50 μg of DES per g within 12 hr after birth. Thirty young male and 30 young female mice (21 days old and weighing 9 to 11 g) received a single s.c. injection of DES at a dose of 10 μg/g, and 20 young male and 20 young female mice received DES at a dose of 100 μg/g. These mice were killed 12 months after treatment. Internal organs were carefully examined for gross pathological lesions, especially tumors and malformations, and were fixed in 10% formaldehyde solution. Specimens stained with hematoxylin and eosin were microscopically examined.

RESULTS

Distribution of Radioactivity. 14C was detected in the various organs of the fetus at about 50% of maternal concentration 1 hr after injection of 14C-labeled DES into the Day 18 pregnant mice, and the radioactivity remained in higher concentration in the fetus than in the mother 5 hr after injection (Table 1).

Urogenital Anomalies. Treatment with a high dose of DES (500 μg/g) on Day 10 induced the abruption of the placenta, but malformations were not observed in the fetuses. The incidence (0 of 99, 0.0%) was not different (p = 1.0) from that of controls receiving water (1 of 320, 0.3%). Treatment with a lower dose of DES (10 μg/g) on Day 17 resulted in a high frequency of abortion and a decrease in the average number of live births, but abortion was not observed at other stages (Table 2). At birth, no anomalies were observed macroscopically in the offspring. Eight to 9 days after birth, opening of the anterior portion of the vaginal orifice, which is closed until 4 weeks of age in normal development, was observed in the female offspring of mice treated on Days 15 to 19 (Chart 1). This finding became clearer after 21 days of age. It is easy to detect this urogenital anomaly, because urine flows from the vagina when the lower abdomen is pressed. Anatomically, the urethra opens into the vagina (persistent urogenital sinus) (Fig. 1). The same anomaly was induced in a significant number of mice with estradiol (Table 2). When male offspring were killed the 12th month after birth, undescended testes and their hypogenesis were observed in a significant number of the male offspring of mice treated on Days 17 and 19 (Table 2). Undescended testes were small (50 to 90 mg) when compared with those of controls [133.8 ± 2.6 (S.E.) mg] and spermatogenesis was not observed in some typical hypogenic testes. Histological patterns were reported previously by Nomura (25). These offspring were sterile. These urogenital anomalies in male and female mice were not observed when DES was given at other stages of gestation or after birth.

Tumors. The incidence of tumor-bearing mice per survivor was low but significantly higher in the offspring of mice receiving DES on Days 15 and 17 than in controls (Table 3). The incidence of ovarian tumors (cystadenomas and granulosa cell tumors) was also significantly higher in these offspring than in controls. The incidence of lung tumor (papillary adenoma) was significant in offspring of mice receiving DES on Day 15. Ovarian tumors were also induced in significant numbers in mice receiving an extremely high dose of DES (100 μg/g) at a young age (Table 3). However, adenosis and adenocarcinoma in the vagina were not observed in the offspring.

Other Lesions in Urogenital and Reproductive Organs. Some female offspring with urogenital anomalies developed large, firm, tumorous masses on the posterior wall of the vagina approximately 6 weeks after birth (Fig. 2). However, they were not adenocarcinomas but were composed of granulomas and proliferating sebaceous glands. Treatment on Days 15 to 19 also induced hypertrophy of the portio vaginalis. Ovaries persisting with no oogenesis were
Table 2
Urogenital anomalies and hypertrophy of the portio vaginalis in mice treated with DES at fetal, neonatal, and young ages

Incidence of urogenital anomaly in female offspring shows the malformation-bearing offspring per survivor the 4th week after birth or treatment. Testicular anomaly, hypertrophy of the vagina, and other anomalies were recorded at the time of sacrifice. The χ² test was applied with Yates's correction.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Chemicals</th>
<th>Age</th>
<th>Dose (μg/g)</th>
<th>No. of pregnant mice</th>
<th>Live births</th>
<th>No. of mice alive at 4 wk</th>
<th>Urogenital anomaly in females</th>
<th>Testicular anomaly</th>
<th>Hypertrophy of portio vaginalis</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DES</td>
<td>Day 7</td>
<td>10</td>
<td>2 (1)*</td>
<td>11 (11.0)</td>
<td>6 (5)</td>
<td>0/5 0.0 NS</td>
<td>0/3 0.0 NS</td>
<td>0/3 0.0 NS</td>
<td>2 HT, 50</td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 9</td>
<td>10</td>
<td>4 (4)</td>
<td>40 (10.0)</td>
<td>17 (18)</td>
<td>0/18 0.0 NS</td>
<td>0/14 0.0 NS</td>
<td>0/13 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 11</td>
<td>10</td>
<td>5 (4)</td>
<td>42 (10.5)</td>
<td>23 (19)</td>
<td>0/19 0.0 NS</td>
<td>0/21 0.0 NS</td>
<td>0/17 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 13</td>
<td>10</td>
<td>4 (3)</td>
<td>30 (10.0)</td>
<td>11 (17)</td>
<td>0/17 0.0 NS</td>
<td>0/10 0.0 NS</td>
<td>0/14 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 15</td>
<td>10</td>
<td>5 (4)</td>
<td>35 (8.8)</td>
<td>15 (19)</td>
<td>3/19 15.8 <0.01</td>
<td>0/12 0.0 NS</td>
<td>0/17 11.8 <0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 17</td>
<td>10</td>
<td>13 (7)</td>
<td>49 (7.0)</td>
<td>12 (19)</td>
<td>17/19 89.5 <0.001(1)*</td>
<td>11/15 73.3 <0.001</td>
<td>12/13 73.3 <0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Day 19</td>
<td>10</td>
<td>12 (12)</td>
<td>110 (9.2)</td>
<td>10 (40)</td>
<td>37/40 92.5 <0.001(18)*</td>
<td>19/27 70.4 <0.001</td>
<td>12/33 36.4 <0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td>Day 19</td>
<td>0</td>
<td>2 (2)</td>
<td>20 (10.0)</td>
<td>9 (9)</td>
<td>0/9 0.0 NS</td>
<td>0/6 0.0 NS</td>
<td>0/6 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estradiol</td>
<td>Day 19</td>
<td>10</td>
<td>5 (4)</td>
<td>35 (8.8)</td>
<td>14 (12)</td>
<td>4/12 33.3 <0.001</td>
<td>0/11 0.0 NS</td>
<td>3/11 27.3 <0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Newborn</td>
<td>50</td>
<td>6 (6)</td>
<td>64 (10.7)</td>
<td>14 (14)</td>
<td>0/14 0.0 NS</td>
<td>0/7 0.0 NS</td>
<td>0/11 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>21 days</td>
<td>10</td>
<td>30 (30)</td>
<td>30/00 0.0</td>
<td>0/0</td>
<td>0/18 0.0 NS</td>
<td>0/24 0.0 NS</td>
<td>0/17 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>21 days</td>
<td>100</td>
<td>20 (20)</td>
<td>20 (20)</td>
<td>0/0</td>
<td>0/17 0.0 NS</td>
<td>0/17 0.0 NS</td>
<td>0/17 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DES</td>
<td>Mother</td>
<td>10</td>
<td>30 (30)</td>
<td>30/00 0.0</td>
<td>0/0</td>
<td>0/31 0.0 NS</td>
<td>0/31 0.0 NS</td>
<td>0/31 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estradiol</td>
<td>Mother</td>
<td>20</td>
<td>20 (20)</td>
<td>20 (20)</td>
<td>0/0</td>
<td>0/31 0.0 NS</td>
<td>0/31 0.0 NS</td>
<td>0/31 0.0 NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td>0</td>
<td>25 (25)</td>
<td>260 (10.4)</td>
<td>77 (77)</td>
<td>0/77 0.0 NS</td>
<td>0/46 0.0 NS</td>
<td>0/77 0.0 NS</td>
<td></td>
</tr>
</tbody>
</table>

* Number of mice that delivered live offspring. The others resulted in abortion.
* NS, not significant; HT, hydrops testis; O, obesity (more than 60 g); E, edema.
* Number of mice that developed a tumorous mass in the vagina.
* Mother mice were exchanged immediately after delivery. Details are given in the text.
* Number of mice used in this experiment and sacrificed the 14th month after birth. Controls were untreated.
DISCUSSION

Detection of high ¹⁴C radioactivity in the various organs of fetuses receiving [¹⁴C]DES indicates that DES or its metabolites can pass through the mouse placenta easily, but not as easily as urethan can (29), when compared with other chemical carcinogens (approximately 1%) (1, 2, 36, 38). Specific accumulation of ¹⁴C in the urogenital organs of the fetus was not observed macroangiographically (data not shown). The transferred compounds induced urogenital anomalies and some tumors in the male and female offspring. However, the patterns of teratogenicity were extremely different from that for other nonhormonal agents (21, 23, 26, 28, 32). Treatment with DES on Day 10, which corresponds to the time of differentiation of various organs and to the stage most sensitive to induction of various kinds of malformations with various chemicals in this strain of mice (23, 26, 28), did not induce malformations even if very large amounts of DES were given. However, treatment with a lower dose of DES on Days 15 to 19 induced urogenital anomalies in the offspring. This is because Days 15 to 19 (the 3rd to 5th lunar months in humans) correspond to the stage of differentiation of the urethra and vagina from the urogenital sinus, a process controlled by androgens secreted from the fetal testes (16). However, urogenital anomalies have not been reported in humans receiving DES during the fetal stage. The difference may be due to the pattern of exposure to DES. The mouse received a single injection of 10 µg of DES per g, while the dose for humans was approximately 0.1 to 2 µg/g/day for more than 3 months (13). In the case of chemical teratogenesis, there exists a sharp threshold dose and a critical stage (29).
DES induced low but significant yields of lung and ovarian tumors in the offspring when given on Days 15 and/or 17, which is the stage of the ICR/Jcl mouse fetus most sensitive to tumor induction with various chemical carcinogens (23-25, 27, 28). A high dose of DES also induced ovarian tumors when given to young mice. These tumor incidences would indicate that DES has a nonhormone-like carcinogetic action on the lung cells, which are not the target of estrogen. Estrogens usually induce tumors in hormone-related organs, such as the pituitary gland, the mammary gland, and the uterus (3, 4, 9-11). Also DES may have increased tumor susceptibility by damaging immunosurveillance (35), because the lungs and ovaries of ICR/Jcl mice are known to be sensitive to various carcinogens for tumor induction (22-25, 27-29). However, a single injection of DES did not induce vaginal adenocarcinoma in mice, although it was given during the stages of the developing mouse embryo and fetus (Days 7 to 19) that correspond to the stages most sensitive to DES in human fetuses (9 to 115 ovulation ages, i.e., 1st to 5th lunar months) for the induction of vaginal cancer (13-15). It might be necessary to give smaller amounts of DES continuously during pregnancy, as happens in humans.

Furthermore, the failure to produce vaginal adenocarcinomas in mice in this study and in previous studies with newborn mice (3, 4, 6-8, 17, 37) may simply reflect the fact that most carcinogens only increase the incidence of tumors that occur spontaneously (20), as do lung and ovarian tumors in ICR/Jcl mice (25). Spontaneous cancers of the vagina are rare in mice (no report for adenocarcinoma), as they are in all animals studied other than humans (20). Dunn and Green (6) observed a few vaginal tumors (3 of 12 in BALB/c and 1 of 10 in C3Hf) 18 to 26 months after neonatal treatment with DES, but the incidence was not significantly different from controls (1 of 4 in C3Hf) and the induced tumors were not adenocarcinomas.

Adenosis in the cervix and vagina after neonatal treatment with estrogen (7) and DES (7, 8) has also been reported in mice by several investigators, but it was dominant in the cervix and had not transformed to adenocarcinoma (8). Prenatal treatment in this study did not induce adenosis in the vagina and cervix, but instead induced a tumorous mass (proliferating sebaceous gland) in the vagina and masculinizations, such as persistent unogenital sinus, hypertrophy of the portio, and ovarian hypogonadism. Hypogonadic ovary is considered to be precancerous (20, 25). Masculinization of other external genital organs, such as clitoromegaly, by very large amounts of estrogens (12) and by androgenic hormones (33) was also reported in rats. The androgenic action of large amounts of DES and estradiol remains to be elucidated. Furthermore, neonatal treatment with DES did not induce vaginal adenosis in this experiment. This may be due to the fact that extremely high doses (50 μg/g), 10 to 20 times the dose used in the previous work (8), killed affected newborns (Table 2). Although tumor masses were not transplantable even if observed more than 2 years after birth, further study on this vaginal lesion remains to be done with different strains and species of experimental animals, because the onset of this lesion is the same as that in humans (at puberty).

ACKNOWLEDGMENTS

We thank Dr. S. S. Koide for providing radioisotope and for his advice; Dr. Y. Sakamoto, Dr. T. Higashi, and Dr. N. Tateishi for their advice and help; Dr. J. F. Crow, Dr. J. A. Miller, Dr. E. C. Miller, Dr. K. Matsumoto, and Dr. H. A. Bern for their advice in preparing the manuscript; and W. Kugler, Jr., for taking the photographs.

REFERENCES

T. Nomura and T. Kanzaki

Fig. 1. Female offspring with persistent urogenital sinus and portio vaginalis hypertrophy (left) and mother with normal vaginal wall and endometrial hyperplasia of the uterus. Vagina was cut sagittally at the posterior wall. a, urethral mucosa; b, hypertrophy of the portio vaginalis; c, uterus; d, normal vaginal wall; e, endometrial hyperplasia.

Fig. 2. Sagittal section of tumorous mass in the vagina. a, tumorous mass; b, hypertrophy of the portio vaginalis; c, rectum.
Induction of Urogenital Anomalies and Some Tumors in the Progeny of Mice Receiving Diethylstilbestrol during Pregnancy

Taisei Nomura and Tohru Kanzaki

Updated version

Access the most recent version of this article at:
http://cancerres.aacrjournals.org/content/37/4/1099

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.